kpilogo shields

cpsm@kpi.ua
+38 044 204 8430

Excess difluorocarbene, generated by the sodium iodide catalysed decomposition of (trifluoromethyl)phenylmercury, adds in a stereospecific cis manner to the carbon-carbon double bonds of poly(1-methyl-1- phenyl-l-sila-cis-pent-3-ene) (I) to yield poly(3,4-difluoromethylene-l-methyl-l-phenyl-l-sila-cis-pent-3- ene) (F2C-I). Similarly, a series of random copolymers has been prepared in which only some of the carbon-carbon double bonds of I have reacted with difluorocarbene. The microstructures of these difluorocyclopropanated polymers have been determined by 1H, 13C, 19F and 298i n.m.r, spectroscopy. The glass transition temperatures of these copolymers are found to depend on the extent of difluorocyclopropanation. The thermal stability of F2C-I has been determined by thermogravimetric analysis. The thermal stability of I, F2C-I, poly(3,4-dichloromethylene-l-methyl-l-phenyl-l-sila-cis-pent- 3-ene ) (C12C-I) and ( 1 -methyl-3,4-methylene- 1-phenyl- 1-sila-cis-pent-3-ene) (H2C-I) are compared

Посилання на статтю:

Addition of difluorocarbene to poly (1 -methyl-1 -phenyl-1 -sila-cis-pent-3- ene). Thermal stability and characterization of microstructures by 1H, 13C, 19F and 2 Si n.m.r, spectroscopy / Howard Shih-Jen Lee and William P. Weber* // Polymer. – 1992. – Vol 33. – P. 4299-4303.

Addition of difluorocarbene to poly (1 -methyl-1 -phenyl-1 -sila-cis-pent-3- ene). Thermal stability and characterization of microstructures by 1H, 13C, 19F and 2 Si n.m.r, spectroscopy - Завантажити.