kpilogo shields

The mechanical response of rubber-modified high density polyethylene (HDPE) was investigated. The rubbers were either ethylene– propylene copolymers (EPDM) or ethylene–octene copolymers (EOR), blended into HDPE at volume fractions of up to 0.22. These rubbers were in the form of finely dispersed spherical inclusions with sizes well below 1 mm. The incorporation of rubber into HDPE does not substantially change its crystallinity, but produces special forms of preferential crystallization around the rubber particles. The notch toughness of the rubber-modified HDPE increases by more than 16-fold as a result. The single parameter, controlling the notch toughness of these blends was found to be the matrix ligament thickness between rubber inclusions. When this thickness is above a certain critical value, the notch toughness of the material remains as low as that of the unmodified HDPE. When the average ligament thickness is less than the critical value a dramatic toughness jump results. The critical ligament thickness for the HDPE–rubber systems was found to be around 0.6 mm, independent of the type of the rubber used. The sharp toughness threshold in the rubber-modified HDPEs results from a specific micro-morphology of the crystalline component of HDPE surrounding the rubber particles. The PE crystallites of approximately 0.3 mm length perpendicular to the interface are primarily oriented with their (100) planes parallel to the particle interfaces. Material of this constitution has an anisotropic plastic resistance of only about half that of randomly oriented crystallites. Thus, when the interparticle ligaments of PE are less than 0.6 mm in thickness the specially oriented crystalline layers overlap, and percolate through the blend, resulting in overall plastic resistance levels well under that which results in notch brittle behaviour, once rubbery particles cavitate in response to the deformation-induced internal negative pressure. This renders ineffective the usual strength-limiting microstructural flaws and results in superior toughness at impact strain rates.

Посилання на статтю:

Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers / Z. Bartczaka, A.S. Argon, R.E. Cohen, M. Weinberg // Polymer. – 1999. – N 40. – P. 2331–2346.

Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers - Завантажити.

 

Корисні статті

Види та функції сучасної упаковки

Різноманітна упаковка щільно увішла у життя кожної людини. На полицях магазинів, в інтер'єрах помешкань можна побачити десятки пляшочок, коробок, аерозольних болончиків. Термін існування упаковки в нашому житті може продовжуватися від кількох хвилин до кількох років. Що ж таке сучасна упаковка? Чому вона займає стільки місця в нашому житті?

Вибір професії

Кожна людина зіштовхується у своєму житті з вибором, який найсильніше вплине на все її подальше життя. Йдеться про вибір професії та вибір вищої освіти. Закінчуючи школу, молоді люди стикаються з величезним вибором професій та спеціальностей: інженер, економіст, юрист, менеджер, маркетолог, логіст, фінансист і т.д. При цьому навколо можна чути безліч стереотипних фраз: "Юристи багато заробляють", "Фінансисти працюють з грошима, тому у них хороші зарплати", "Маркетолог - основний людина в будь-якому бізнесі", а часом і просто без обґрунтування - "Менеджер - це круто ". Часом, такі "поради" впливають на вибір професії.

Комп'ютер для інженера

У сучасному світі комп'ютери дуже поширені. Складно уявити людину, не знайому з цим поняттям. Багато професій зобов'язані своїм виникненням саме комп'ютеру, вони б просто не з'явилися без створення електронно-обчислювальної техніки.

І хоча відносно недавно, на початку XX століття, комп'ютери були розкішшю і використовувалися лише для самих складних розрахунків, у наш час комп'ютери та комп'ютерна техніка дуже глибоко інтегрувалися у наше життя. Сучасне людство залежить від комп'ютерів, що викликає подиву, якщо розглянути, коли і в яких випадках вони використовуються.

Інженер-машинобудівник

Ні для кого не секрет, що при сучасних умовах життя, темпах розвитку промисловості, безперервній автоматизації та оптимізації роботи механізмів та виробничих процесів, великою популярністю та попитом на ринку праці користується професія інженера, особливо інженера-машинобудівника.

Щоб відповісти на питання «Хто такий інженер-машинобудівник?», необхідно розуміти , що несе в собі кожне з цих слів окремо. Інженер – це людина, яка отримала освіту з визначеного фаху. Інженер – це творець техніки. Інженер – це особа, що професійно займається інженерією, тобто на основі поєднання прикладних наукових знань, математики та винахідництва знаходить нові рішення технічних проблем. Тобто, виходячи з цих загальновживаних визначень слова «інженер» зрозуміло, що цій професії може присвятити себе лише людина з неабиякими здібностями, які ґрунтуються на знанні точних наук, логічному мисленні, невичерпному терпінні і постійному бажанні вдосконалювати світ інженерії. Від латини ingenium — здатність, винахідливість, що є свідченням того, що інженером перш за все є людина-думаюча, яка знаходиться в безперервному пошуку відповідей на складні технічні завдання.

Полімерні матеріали

Полімер це велика молекула, або макромолекула, котра складається з багатьох субодиниць. Через їх широкий спектр властивостей, синтетичні і природні полімери відіграють найважливішу і всюдисущу роль в повсякденному житті. Полімери в діапазоні від знайомих синтетичних пластмас, таких як полістирол природний біополімер, таких як ДНК і білки, які є основоположними для біологічної структури і функцій. Полімери, як природні і синтетичні, створюються за допомогою полімеризації багатьох малих молекул, відомих як мономери.