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Particle masses of the order of 108-101° gmo1-1 and the radii of gyration and hydrodynamic radii of 
spherical poly(methyl rnethacrylate) particles were characterized by combined static and dynamic light 
scattering. The dispersions were prepared by dispersion polymerization and stabilized by polystyrene-block- 
poly(ethylene-co-propylene). The radii of gyration were calculated from the measured particle scattering 
intensity by fitting procedures using the Rayleigh formula for spheres. This practice allows the use of all 
points actually measured instead of the uncertain values at low angles only. The strongly disturbing influence 
of small contents of large particles (aggregated particles, dust) was eliminated. The autocorrelation functions 
were measured by dynamic light scattering and analysed by the Contin procedure. The coronas and densities 
of the particles could be characterized on the basis of the geometric radii of the pure main components. 
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I N T R O D U C T I O N  

Dispersion polymerization is a modified precipitation 
polymerization technique 1 carried out in the presence of 
stabilizer which prevents the macroscopic separation of 
the polymer. The monomer to be polymerized must be 
soluble in the dispersion medium and the forming 
polymer must be insoluble. Block or graft copolymers 
are normally used as steric stabilizers 1'2. The best 
stabilizing effect can be obtained if the blocks of one type 
are insoluble in the reaction medium (the so-called anchor 
blocks, Figure 1) and if the blocks of the other type are 
soluble and form the shell ('corona') of the dispersion 
particle. 

In the submicrometre range in particular, the light 
scattering technique is a powerful tool for the investigation 
of dispersion particles. By means of static light scattering, 
absolute values of molar masses of the particles 
and their radius of gyration can be obtained. The 
hydrodynamic radius, defined as the radius of the sphere 
with equal hydrodynamic behaviour, can be determined 
by dynamic light scattering. 

In a previous study 3 we obtained the molar masses, 
radii of gyration, and the volume fraction of the solvent 
in the particle body of selected poly(methyl methacrylate) 
(PMMA) dispersions stabilized by polystyrene-block- 
poly(ethylene-co-propylene) in decane. In this contribution 
we analyse the possibility of fitting the particle scattering 
function of homogeneous spheres to experimental data. 
By combining with a mathematical separation procedure 
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and with results of dynamic light scattering, it is possible 
to determine the corona density on the assumption of an 
unswollen particle core. 

Determination of particle masses and radii of gyration by 
two-component separation or a maximum fit 

Two-component separation procedures are well 
established for the separation of molecular and 'microgel' 
components of solutions of macromolecules 4 9. All these 
procedures are based on observation of the rapid decrease 
of the scattering intensity of a small amount of relatively 
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Figure 1 Sketch of a dispersion particle (from ref. 3) 
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large particles in the wide-angle region, where the 
scattering of the main component with a smaller size 
dominates. 

The basic assumptions for the two-component separation 
are: 

W 1 + W 2 = I (1) 

and 

M *  + M *  = M w = ( K c / R e ) -  I (2) 

where wl,2 are the weight fractions of the main 
component 1, the 'normal' dispersion particles, and of 
the component 2. The nature of this component will be 
discussed later. Both components are assumed to be 
monodisperse. The asterisks represent apparent particle 
masses: 

w l , 2 M , , 2 - M 1 ,  2 (3) 

It is useful to fit the data K c / R e  (measured at various 
angles and extrapolated to infinite dilution), similarly 
to the method of Francuskiewicz and Dautzenberg 8. 
But whereas these authors approximated the main 
component (macromolecules) by a P(®) function of 
polymer coils, we use Rayleigh's formula for the 
scattering of spheres 1° in order to approximate the main 
component, the spherical particles of the dispersions: 

P(®) = [(3/X3)(sin X -  X cos X)] 2 (4) 

with 
X = (5/3)l/2(4rCno/2o)R~ sin(O/2) (5) 

In this simplified treatment we suppose that the particles 
are uniform and R G is their radius of gyration. Knowledge 
of the RG/Mw relation is required. 

The model calculations can be started using the radii 
of gyration and the particle masses, which are estimated 
from the hydrodynamic radii and the experimental values 
M w. By computer simulation combinations of R C 
and M w were rapidly found that fitted well with the 
experimental points of the angular dependence of K c / R  
in the wide-angle range by equation (4). If the aim of the 
separation is a good fit for the main component 1, the 
criterion is a minimum of the difference between the 
measured and the calculated values at the same angle. 

The advantages of this practice are: 

1. A fit with the Rayleigh approximation gives better 
results than the use of simple polynomial functions. 

2. The unmeasurable part in the low-angle region is 
completed by more exact values, which is especially 
significant for increasingly large particles. 

3. At small angles of observation the presence of dust or 
aggregates strongly influences the scattering intensity. 
In the wide-angle region one obtains more exact values 
for particle masses and the radii of gyration, because 
the intensity of disturbing particles decreases to less 
than 1% in the wide-angle region. This limit is smaller 
than the experimental error, which we can assume to 
be about 2-3 % for these strongly scattering particles. 

For particles with a geometric radius greater than 140 nm, 
maxima and minima of K c / R  e are observed in the 
'window of observation' between 30 and 150 ° . In 
this region the calculation can be done with the 
Rayleigh-Debye-Gans approximation. (The Mie region 
begins at about 300 nm.) The fit of the position of the 
maxima is a second possibility for interpreting the 

experimental results. Details of both procedures are given 
in the Results and Discussion section. 

EXPERIMENTAL 

For dispersion polymerization and scanning electron 
microscopy, see references 3 and 11. The mass fraction 
of the stabilizer Xs of all samples is presented in Table 1. 
The ratio between the mass fractions of anchor and shell 
chains, XA:Xc=0.418, is constant for all samples. 

Refractive index increments 

By analogy with references 3 and 11, the refractive 
index increments of PMMA dispersions in decane at 
wavelength 20 = 546 (or 633) nm at 25°C were calculated 
according to the simple additivity rule: 

v = VsX s + vp(1 - Xs) (6) 

where Xs is the mass fraction of the steric stabilizer in 
the dispersed particles, Vs (=0.120 (0.117) cm 3 g- 1) is the 
refractive index increment of the stabilizer determined by 
means of a Brice-Phoenix differential refractometer 
(BP-2000-V). The refractive index increment of the 
PMMA, Vp=0.081 (0.078)cm3g -1, was estimated by 
interpolation of literature data '2, that of polystyrene 
anchor blocks to VA=0.169 (0.165)cm 3 g-1 and that of 
shell chains to v c = 0.085 (0.082) cm 3 g- 1. 

Static light scattering (SLS) 

The dispersions were diluted from 1:400 ('X' samples) 
to 1:10000 (samples 13, 14 and 15) using purified 
decane (distillation and filtration over 1/tm glass 
filter) and filtered through filters of pore size 0.85 #m 
(Synpor 4, Labora, Czech Republic). The intensity of the 
scattered light was measured by means of a Fica 50 
apparatus using a mercury high pressure lamp and 
wavelength 20 = 546 nm. Normally this apparatus allows 
the determination of intensity at 11-13 standard angles 
between 30 and 150 °. Measurements at other angles can 
also be made. A neutral attenuator was used to decrease 
the high intensity of the scattered light. The Fica 
apparatus was calibrated using a sealed sample of 

Table 1 Mass  fractions of stabilizer Xs, particle masses Mw, radii of 
gyration R e, and hydrodynamic radii Rn of poly(methyl methacrylate) 
dispersions in n-decane 

10 -8 M w Re RH 
Sample Xs (g m o l -  ') (nm) (nm) 

X1 0.110 1.95 51.5 71.8 
X2 0.199 0.71 47.1 61.6 
X3 0.271 0.53 44.8 57.3 
X4 0.332 0.38 44.7 53.8 

1 0.054 9.30 157 89.1 
2 0.102 2.35 66.4 69.0 
3 0.146 1.10 48.2 65.0 
4 0.185 0.91 46.5 67.6 
5 0.035 43.8 200 151 
6 0.068 13.4 71.3 121 
7 0.098 6.4 59.2 98.5 
8 0.127 4.0 39.0 91.5 
9 0.026 84 199 174 

10 0.052 50 146 175 
11 0.076 65 128 180 
12 0.098 37 86.2 161 
13 0.022 246 295 191 
14 0.042 257 349 198 
15 0.062 206 325 180 
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Figure 2 Zimm plot for dispersion of sample 6 

high-purity benzene. Some samples were measured 
with a modified Sofica 42000 apparatus using a 
Zeiss 50mW He-Ne laser (2o=633nm) as the light 
source. Comparable results were obtained from the two 
types of apparatus. 

The concentration dependence was very low in most 
cases, that is, A 2 <  10 -5 mol cm 3 g-1 (see Figure 2); this 
value could consequently be neglected. 

Dynamic light scattering (DLS) 
A laboratory-made homodyne light scattering 

spectrometer was used. It consisted mainly of the Sofica 
apparatus described above, the 50 mW He-Ne laser and 
an NSA 1000 100-channel stochastic analyser NSA 1000 
(Metrimpex, Hungary) interfaced with a microcomputer 
and other peripheral units x 3. The autocorrelation functions 
were analysed by a single-exponential fit and by a 
non-negative least-squares procedure 14. 

Some selected samples were independently measured 
by means of the laboratory-made homodyne spectrometer 
with a 96-channel digital correlator 3 and analysed by a 
single-exponential fit and by the Contin procedure. In 
all cases the hydrodynamic radii R n were calculated from 
the diffusion coefficients, Do of the dispersion particles 
using the Stokes-Einstein equation: 

R H = k T/6nqD c (7) 

where k is the Boltzmann constant and q is the viscosity 
of decane at 25°C (=0.853cP) ~5. The concentration 
dependence of the diffusion coefficient was neglected. 

RESULTS AND DISCUSSION 

Stability of diluted samples 
According to the different stabilizer contents of the 

samples, the long-time stability of diluted dispersions is 
very different. The lowest concentration, which is 
practically stable for several hours to facilitate the 
measurement, varies with the stabilizer content of 
the dispersion particles and should be determined 
experimentally. We often used the concentration of 
2 × 10- 5 g ml-  1 as the lower limit. An impressive example 
of the intensity changes with time is given in Figure 3. 
This effect is observed mainly for relatively unstable 
dispersions, that is the dispersions of samples 5, 9, 13, 

14 and 15 with a high mass and relative to the 
mass - -  low stabilizer content. 

The scattering intensity of the diluted dispersion 
of higher concentration (a in Figure 3) is stable for 7 days 
or more, whereas the intensity of more (than the 
given concentration limit) dilute dispersions (b in Figure 
3) decreases immediately. For example, in comparison 
with dissolved macromolecules, the scattering intensity 
of the compact dispersion particles is high. The possibility 
of multiple scattering16 increases with increasing 
concentration. This fixed the upper concentration limit 
in the order of 3 x 10 -4  5 X 10 -4 g ml- 1 

Finally, it is necessary to consider the aggregation and 
the change of the values Kc/R e, which were plotted for 
the interpretation of SLS experiments. The precipitation 
of aggregated particles reduces the real concentration. In 
most cases, the particle masses obtained some hours or 
days after the dilution and filtration were apparently 
lowered. The particle dimensions, on the other hand, will 
be found higher than expected because aggregates 
influence the low-angle region, which is used for 
determining the radii of gyration. 

To obey the rules for dilution, given above, and to 
measure these unstable samples immediately (i.e. for some 
minutes) after dilution is the best way to obtain correct 
results, especially for the dispersions with high mass and 
low stabilizer content. 

Particle masses and hydrodynamic radii 
The basic results from the static and dynamic 

measurements are arranged in Table 1 together with 
the chemical composition parameters of all samples. 
The molar masses were obtained by a polynomial 
extrapolation of Kc/R c to zero angle; the radii of gyration 
were obtained in the usual manner from the slope 
of this extrapolation curve. These data result from 
measurements that are independent of those given in 
references 3 and 11. In general they agree well. Both radii 
are plotted versus Mw in Figure 4. The linear regression 
analysis for log R G and log R H, respectively, versus log M w 
gives the relations: 

R G = 0.132M °'317 (nm) 

RH= 1.212M T M  (nm) 
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Figure 3 Plot of Kc/R  o for two dilutions of sample 5 as a 
function of time: (a) c = 4 . 4 x 1 0  - S g c m  3; (b) c = 4 . 3 × 1 0 - 6 g c m  3. 
C), A, Measured at 90°; O ,  A ,  measured at 11 preset angles (30-150 ") 
and extrapolated to 0 ° 
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Figure 4 The radius of gyration R e (O) and the hydrodynamic 
radius R H (A) versus the particle mass Mw 

with relatively low coefficients of correlation, k 2 = 0.841 
or 0.942, respectively, especially in the case of Rc. The 
values represent particles with different stabilizer content 
and tendency to aggregate, which mainly influences the 
intensity of the scattered light. 

According to the stabilizer content, the dispersion 
particles are neither 'hard' nor homogeneous spheres. 
Therefore not only the hydrodynamic but also the 
geometric radius is significant for obtaining further 
information on the density of the particles, their bodies 
and shells. The good correlation of R n data and the poor 
correlation of R G suggests a critical observation or, better, 
a correction of the SLS results by means of a 
two-component separation fit. 

Two-component separation 
By computer simulation, using the radii of gyration 

and particle masses estimated from the hydrodynamic 
radii and the experimental values of M w, combinations 
of R G and M w were rapidly found that fitted well with 
the experimental data Kc/R o by equation (4). A first 
approximation is the relation between R6 and M w. In 
all cases, good agreement between 60 ° and 150 ° was 
obtained. This means a minimal difference of about 1% 
between the measured Kc/R ~ and the calculated values. 
For light scattering intensity measurements it is normally 
smaller than the reproducibility range. The observed 
values of the samples with a low stabilizer content differed 
more strongly from the calculated values, and at smaller 
angles of observation the agreement varied. 

In most cases we were not able to approximate all 
points by one component because in the small-angle 
range the residue is more than 1% of the intensity. The 
justification for the two-component separation fit is 
demonstrated by Figure 5, exemplified by sample 1. The 
difference between the simple polynomial extrapolation 
of the SLS data and the two-component fit is outside the 
experimental error. In the discussion we have to 
distinguish between samples X1-8 and 12 on the one side 
and samples 9-11 and 13-15 on the other. 

Let us consider the first group of samples. The data 
obtained for this group are RG, 1 and M*. Mw, 1 was 
calculated by equation (3) and is listed instead of M* in 
Table 2. 

The equation 

R G 1=7.30 x 1/)-2 AArO'32a (nm) 

with k 2 =0.990, was obtained by a linear regression of 
the logarithmic data. The value for the exponent is slightly 
lower than that expected for hard spheres, owing to the 

dissolved corona of the particles. The relationship is valid 
up to M ~ 2  x 10 s gmo1-1 and gives an average over 
all particles with various shells and for a broad 
spectrum of particle sizes (see Figure 8). For groups of 
samples with approximately the same mass fraction of 
stabilizer Xs, one can calculate similar relationships. For 
Xs = 0.0354).068 the exponent is 0.340, for x s = 0.0984). 145 
it is 0.278 and for Xs=0.1854).331 it is 0.270. The 
exponents show the different interaction of the particles 
with the solvent according to the various content of 
stabilizing macromolecules. 

Nevertheless, it is necessary to investigate whether one 
can interpret the main parts with real particle size 
distributions, which deviate more or less from the 
monodispersity. Therefore let us compare our results with 
published electron microscopic data of selected samples 3. 
All of our RG,1 values (converted into the geometric 
radii by multiplication by the factor (5/3)1/2= 1.291) 
approximately represent the most frequently occurring 
large particles in the dispersions. This is understandable 
if we bear in mind that all radii determined by light 
scattering are z-averaged. In all cases, the difference points 
form a 'curve' of the angular dependence of intensity, 
similar to that of a spherical scatterer with distinctly 
larger particles. Obviously these points can also be 
described by equations (4) and (5). Therefore we also 
fitted these difference or 'residue' points by Rayleigh's 
formula necessary for spheres with radii that are two or 
three times larger than those of component 1. These 
values do not describe a second component of a real 
distribution, but describe aggregates, single particles of 
untypical size or some residual dust particles. Therefore 
it is more important to obtain corrected data for the first 
(or main) component than to characterize the small (and 
here unimportant) second component. 

The weight fractions of this component are 
0.0002 < w2 <0.0067. For samples 1 and 5, with a small 
stabilizer content, the weight fraction of the aggregates 
is in the order of W 2 ~ 0 . 0 3  , i.e. 3%. This is in agreement 
with the lower stability of the dispersions diluted for 
measurements. Only if equations (2) and (3) are nearly 
fulfilled and both curves are fitted by equations (4) 
and (5), is a coherent picture, including all samples 
X1-8 and 12, obtained. 
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Figure 5 Comparison of the simple polynomial extrapolation of static 
light scattering data and the two-component fit for the dispersion 
of sample 1. - - - ,  Angular dependence of K c / R  e (a); results: 
Mw=9.30x 10Sgmol-1; R~=157nm.  - -  , Fit for component 1 (b); 
parameters: Mw,1 = 3.16 x l0 s g mol -  1; R~,I =43.2 nm; (3, (a)-(b) at the 
fixed angles; - - - ,  fit for component 2 
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Table 2 Results of the two-component separation and densities of the body and shell of the particles 

1 O- 8 Mw 'l R~,l RH, 1 dbody d~o~ Rbody 
Sample (g tool- l) wl (nm) (nm) (g cm 3) (g cm- 3) (nm) p 

X1 1.89 
X2 0.67 
X3 0.51 
X4 0.37 

l 3.16 
2 2.23 
3 1.07 
4 0.86 
5 31.7 

6 12.5 
7 6.26 
8 3.86 

10 8 
mw, 1 ,max 

9 75.1 
10 69.6 
11 60.9 
12 41.9 
13 139 
14 139 
15 118 

0.9998 34.9 - 1.183 0.149 38.7 - 
0.9994 26.7 1.177 0.146 27.4 
0.9992 25.5 1.171 0.151 24.6 
0.9997 20.8 49.3 1.166 0.146 21.8 0.421 
0.9647 43.2 - 1.187 0.055 45.5 - 
0.9933 38.6 - 1.184 0.098 41.4 
0.9985 31.8 61.4 1.181 0.099 31.4 0.518 
0.9978 26.2 57.3 1.178 0.085 29.8 0.457 
0.9636 94.8 134.7 1.188 0.032 108.2 0.704 
0.9983 68.2 112.6 1.186 0.069 72.5 0.606 
0.9988 51.0 89.4 1.184 0.161 57.8 0.571 
0.9989 45.0 80.6 1.182 0.148 49.3 0.558 

R G ,  1 ,max 

121 - 1.188 0.024 137.8 
118 - 1.187 0.022 115.5 - 
113 1.185 0.022 105.0 
100 1.184 0.044 103.7 
148 1.189 0.019 171.0 
148 - 1.188 0.037 200.5 - 
140 - 1.186 0.054 186.2 
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Figure 6 Log(Kc/R ) versus sin2(®/2): 0 ,  of dispersion 13 
(c=2.32×10-Sgcm -a) measured at 61 angles; - - - - ,  fit of the 
position of the maxima by two components; C), of dispersion 14 
(c = 2.37 × 10- 5 g cm 3) measured at 11 standard angles 

Interpretation of the particle scattering for dispersion 
particles with R > 140 nm 

F o r  par t ic les  with a geometr ic  rad ius  grea ter  than  
~ 1 4 0 n m ,  the ca lcu la t ion  can be done  with the 
R a y l e i g h - D e b y e - G a n s  app rox ima t ion .  

We tried to use the t w o - c o m p o n e n t  sepa ra t ion  
p rocedure  for d i spers ion  samples  9-11 and  13 15, 
i.e. those with larger  part icles.  In  this case the condi t ions  
for an exact  fit, especial ly equa t ion  (1), canno t  be fulfilled. 
This result  is no t  connec ted  with the influence of the 
par t ic le  size d i s t r ibu t ion  of  the or ig inal  samples,  but  
exclusively with the u n w a n t e d  aggrega t ion  of  part icles.  

To use the m a x i m u m  of the scat ter ing intensi ty  is a 

second poss ib i l i ty  for the in te rpre ta t ion .  In Figure 6, the 
values log(Kc/R) are p lo t ted  for two of  the dispersions.  
Accord ing  to the non-negl ig ible  par t ic le  size d i s t r ibu t ion  
and  to the aggrega t ion  in the d i lu ted  dispersions,  the 
m a x i m a  of the curves are very b road .  Therefore  an exact  
de t e rmina t ion  of  the m a x i m u m ,  in o rde r  to calculate  the 
average par t ic le  size, is impossible .  

In  these cases we tr ied to fit the pos i t ions  of the m a x i m a  
using Rayle igh 's  equa t ion  for the scat ter ing of spheres 
(equat ions  (4) and  (5)) wi thout  ca lcula t ing  the comple te  
scat ter ing behav iou r  for defined radi i  of gyra t ion  and  
mola r  masses. Especial ly  in the difficult case of the 
in te rp re ta t ion  of the two or  three maxima,  which 
can be observed  for par t ic les  with R ~ >  140nm, this 
m e t h o d  leads to sensible results  for the dimensions.  
Nevertheless ,  a higher  resolved measuremen t  al lows a 
rel iable in te rpre ta t ion .  Figure 6 also shows log(Kc/R ) of 
d ispers ion  sample  13 measu red  at  61 angles. In  this 
case we can dis t inguish between var ious  possible  
in te rp re ta t ions  of  the three m a x i m a  as be longing  to 
the or iginal  sample  (the second peak) or  caused by 
aggrega t ion  (the first and  th i rd  peaks). 

In o rde r  to ob ta in  real values of the par t ic le  masses 
from the radi i  of gyra t ion ,  we used the RG,1/M w 
re la t ionship  and  ca lcula ted  the values M . . . . .  which fit 
into the pic ture  of  sizes, masses  and  densit ies ins tead of 
the par t ic le  mass,  which is influenced by aggregat ion.  The  
da t a  are m a r k e d  with the index 'max '  in Table 2. 

Separation of components by detailed analysis of the 
autocorrelation functions 

Addit ional ly  to the particle scattering function, measured 
by SLS, the au toco r r e l a t i on  funct ions of  dynamic  
scat ter ing can be analysed.  Time reso lu t ion  is used as a 
powerful  effect in add i t i on  to angu la r  resolut ion,  which 
acts in bo th  vers ions  of the exper iment .  
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Figure 7 Separation of components of dispersion 5 by the program 
'Contin';  Rn,1 = 134.7 nm, Rrl,2 = 2950 nm 

Using Provencher's program 'Contin '17 we obtained 
the RH,1 data presented in Table 2. An example for this 
separation is given in Figure 7. The squares of Ro, ~, 
Rc,~ . . . .  and R.,~ are plotted in Figure 8. Although the 
Contin method and the two-component separation 
method differ strongly in mathematical sense as well as 
in the physical meaning, the result of these very different 
calculations is a coherent picture. 

The parameter p and the corona dimensions and density 

The dimensionless parameterlS: 

p = RG/R n (8) 

clearly reflects the influence of the stabilizer content, 
especially the dissolved chains of the poly(ethylene-co- 
propylene) part of the stabilizer. The dispersions with 
low stabilizer content give data close to p =0.776, the 
limit for the hard sphere (Table 2). 

The parameter p is plotted against x~, the content 
of poly(ethylene-co-propylene) in the dispersion in 
Figure 9. With a decreasing content of stabilizer, p grows, 
whereas at higher contents unexpectedly low ratios are 
obtained. (Normally for dissolved molecules or parts of 
such molecules values higher than 0.776 should be 
obtained.) Such data are published by Kunz et al. 19 for 
microgels of poly(butyl methacrylate). The shell model 
of the PMMA dispersions is analogous to the concept 
described above. Nevertheless, in our model the closed 
curve of the corrected points p = RG,~/Rn, ~ (also plotted 
in Figure 9) indicates the possibility of unswollen cores 
of the dispersion particles, because this curve tends to 
the value p=0.776 for hard spheres. This finding is 
therefore especially meaningful because both constituent 
values were determined by independent experiments on 
different samples and calculated by various mathematical 
methods of data analysis on different suppositions. 

It should always be borne in mind that all the 
dispersions are not actually monodisperse and all 
results are obtained by model calculations based on 
experimental results. They do not agree with the finding 
of swollen particle bodies 3. The correctness of one or 
the other finding can be proved by independent 
measurements under the experimental conditions of 
optical masking, i.e. in an isorefractive solvent for the 
shell chains. 

Assuming an unswollen body, the density of the body 
as an arithmetic average of both components, solid 
PMMA and polystyrene, can be calculated. Then Rbody 
can be evaluated from Mw, 1 and the density of the body: 

(3(Xp + XA)Mw, I ~ 1/3 

R b ° d Y = \  4~ZSAdbody // 
(9) 

where xp and x A are the mass fractions of PMMA and 
polystyrene, respectively, and NA is Avogadro's number. 

The density of the corona d~o r is the difference between 
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Figure 8 Squares of the radii of gyration R 2 G,1 (O) and Ro, 1 . . . .  (@), 
and of hydrodynamic radii R~, a (A) versus the particle mass Mw, ~ 
or Mw,~ .. . . .  respectively, for poly(methyl methacrylate) dispersions 
stabilized by polystyrene-block-poly(ethylene-co-propylene) 
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Figure 10 Density of the corona d~or versus x~, the mass fraction of 
poly(ethylene-co-propylene) 

functions measured by dynamic light scattering leads to 
more reliable data for particle sizes. For bigger and more 
unstable particles the radii of gyration, which were 
calculated from the positions of the extrema of the 
intensity of scattering, fit into the picture of sizes and 
densities over a broad range of molar masses, sizes 
and densities of particle cores and shells. 
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