Lewis acid coordination complexes of polymers:
3. Poly(benzobisimidazobenzophenanthroline) ladder and semiladder polymers

Michael F. Roberts and Samson A. Jenekhe*
Department of Chemical Engineering and Center for Photoinduced Charge Transfer,
University of Rochester, Rochester, NY 14627-0166, USA
(Received 3 August 1993; revised 5 March 1994)

The structures, solution properties and solid state properties of complexes of poly(benzobisimidazobenzophenanthroline) ladder (BBL) and its semiladder analogue (BBB) with the Lewis acid aluminium(III) chloride (AlCl₃) and gallium(III) chloride (GaCl₃) are reported. At a 4:1 mole ratio of Lewis acid to polymer (BBB or BBL) repeat unit, electron donor-acceptor complexes of Lewis acid-base type, which are highly soluble in organic solvents, are formed. A detailed spectroscopic investigation shows that complexation of both polymers involves coordination of the Lewis acids to the electron-rich carbonyl oxygens and the imine nitrogens in the polymer backbones. The complexes of BBL exhibit the characteristic rigid-rod behaviour of the pristine ladder polymer. BBL complexes have rigid, rod-like chain conformations in dilute solution as evidenced by their solvent independent intrinsic viscosities. The complexes form liquid crystalline solutions above 8 wt% BBL in AlCl₃/nitromethane and above 9-9.5 wt% in GaCl₃/nitromethane. The solid complexes of BBL have slightly smaller optical absorption edges than BBL and ~ 50% larger absorption coefficients at λmax. D.S.C. revealed a glass transition (Tg) of the 4:1 GaCl₃:BBL complex at 15°C. Dynamic mechanical experiments indicated the Tg, measured at the loss tangent peak, was in the range 29-37°C depending on frequency, with an activation energy of 448 kJ mol⁻¹. The complexes of BBB by contrast exhibit flexible-coil behaviour due to the polymer topology. In solution, BBB complexes have intrinsic viscosities which depend on the solvent and Lewis acid used, due to differing degrees of coil expansion in different solvent media. Coil expansion in solution leads to improved conjugation of BBB complexes as evidenced by comparison of the electronic absorption spectra with those of BBL. BBB complexes, like the pure polymer, are apparently not liquid crystalline at high concentrations in solution. The solid 4:1 GaCl₃:BBB complex has a Tg at 30°C, and a dynamic mechanical analysis Tg in the range 12-24°C. The Tg activation energy, at 293 kJ mol⁻¹, is lower than that of the BBL/GaCl₃ complex. The overall results of the present studies provide a basis for understanding the structure and properties of these polymers in terms of intermolecular interactions and also have implications for the processing of the polymers for diverse applications.

(Keywords: Lewis acid; coordination complexes; properties)

INTRODUCTION

Poly[(7-oxo-7H,10H-benzimidazol-4',5':5,6-benzimidazol-2,1-azisoquinoline-3,4:10,11-tetrayl)-10-carbonyl] (BBL, Scheme 1a) is a member of a class of polymers known as ladder polymers, so named because a schematic diagram of their molecular structures resembles a ladder (Scheme 1b). Poly(6,9-dihydro-6,9-dioxobis-benzimidazo[2,1-b:1',2'-j]benzo[11jm][3,8]phenanthroline-2,13-diyli) (BBB, Scheme 1c) is known as a semiladder polymer for similar reasons (Scheme 1d). The synthesis of ladder polymers was motivated by the need for materials with increased resistance to thermal-oxidative degradation compared with conventional polymers. Their double-stranded structures have reduced tendencies towards complete chain scission due to the necessity of breaking at least two adjacent bonds in a backbone ring to do so. BBL and BBB were first synthesized in an effort to develop polymers with very high strength and high temperature resistance for use as structural materials in aerospace applications. Although BBL has a fully fused structure and BBB does not, no significant differences in thermal and mechanical properties are observed. Both polymers are thermally stable (i.e. exhibit no weight loss) to 550°C in air and 700°C in nitrogen. Various other polymers were also synthesized which are based on the bisimidazophthalimide structure.

Due to the difficulties encountered in processing, the mechanical properties which were reported are low compared to theoretical estimates. In the case of BBL, Young’s moduli of 3.65 and 7.58 GPa and tensile strengths of 66.2 and 114.5 MPa were reported for films prepared by filtration of a suspension and acid processing, respectively. Wierschke has predicted a modulus of 720–745 GPa for BBL by AM1 calculations, which probably indicates that the experimental values achieved are suboptimal. Several studies have been carried out to characterize the morphology and thermal

* To whom correspondence should be addressed

© 1994 Butterworth-Heinemann Ltd
POLYMER Volume 35 Number 20 1994 4313
transitions of such films. X-ray diffraction studies revealed that BBB is non-crystalline, although diffuse diffraction maxima indicated extensive short-range stacking of the repeat units with a very close intermolecular spacing of 3.5–3.6 Å (perpendicular to the plane of the repeat). Weaker reflections at 7.5 Å indicated some correlation of the molecules in the molecular plane and approximately perpendicular to the long axis of the repeat unit. Tensile and creep recovery measurements in the range 30–500°C indicated that this 'supra-Lewis acid coordination complexes. 3: M. F. Roberts and S. A. Jenekhe

Scheme 1

coils polymer in solution. BBL has a rigid-rod structure in solution although liquid crystallinity was not observed due to the limited polymer solubility.

More recently there has been interest in the potential of BBB and BBL as electronic and optical materials. Sulfuric acid doped films of BBL were produced with a conductivity of 2 Ω⁻¹ cm⁻¹ and lower conductivities were obtained with alternative dopants. The doping mechanism has been probed by MND methods. In our group has shown that conductivities in the range 80–200 Ω⁻¹ cm⁻¹ can be achieved for BBL by ion implantation doping. Electrical conductivities as high as 20 Ω⁻¹ cm⁻¹ were achieved in electrochemically doped BBL. We have reported the third-order non-linear optical susceptibility (χ(3)) spectra of BBL, BBB and a model compound in the wavelength range 1.0–2.4 μm and analysed the results using an essential states model. The magnitude of χ(3) was found to be greater for BBB than BBB at all wavelengths and is in the range 0.96 × 10⁻¹⁷–6.4 × 10⁻¹⁸ esu for both polymers.

In our studies of the non-linear optical properties of these polymers, we employed a technique developed in our laboratory for processing of BBB and BBL. The technique involves solubilization of BBB or BBL in an organic solvent, such as nitromethane, in the presence of a metal halide Lewis acid. The solutions produced are used to prepare films, coatings or fibres of the polymers by conventional techniques. Our success in processing these polymers via conventional organic solvents eliminates many of the difficulties associated with processing of ladder polymers, which stem from their insolubility and intractability.

In earlier papers we have reported how our soluble complexes approach may be applied to other classes of polymers such as rigid-rod polymers (e.g. poly(phenylene benzobisthiazole) (PBZT) and polyamides). In all cases we found on examining the complexes formed that the metal halide Lewis acids (e.g. BCl₃, AlCl₃, GaCl₃) coordinate to heteroatoms in the polymers (e.g. O, N, S) thus forming electron donor–acceptor complexes. In this paper, we examine the structures of the complexes of BBB and BBL with the Lewis acids AlCl₃ and GaCl₃ to elucidate the coordination sites, and we report on their solution and solid state properties. Apart from the practical interest in improving their tractability and processability, the two polymers BBB and BBL constitute a unique and interesting system for study, quite different from polymer systems whose complexes we have investigated previously. Although the two polymers have very similar chemical structures, they have very different chain conformations due to differences in the chain topologies. BBL has a very rigid structure and is conformationally inflexible due to its completely formed ladder structure. On the other hand, BBB polymer does not have a completely fused structure and rotations about the single bonds at either end of each repeat unit give conformational flexibility to the polymer.

EXPERIMENTAL

BBB and BBL were synthesized according to literature methods. The BBB sample had an intrinsic viscosity of 5.65 dL g⁻¹ in 99% MSA at 30°C. The corresponding molecular weight (Mₘ) is 172,000 which we obtained by
extrapolation of Berry and Yen's intrinsic viscosity--molecular weight data. The BBL sample had an intrinsic viscosity of 8.2 dl·g⁻¹ in MSA at 30°C. The intrinsic viscosity--molecular weight relationship is not well established for this polymer and we estimate M_w is ~75,000 from Berry's plot of the Yamakawa–Fujii relationship with an assumed hydrodynamic chain diameter of 12 Å. Polymer samples were dried thoroughly in a vacuum oven at 100°C and then stored under nitrogen prior to use. All organic solvents, Lewis acids and protonic acids were used as received without further purification: nitromethane, 99.9+% (Aldrich); dichloromethane, 99+% (Aldrich); AlCl₃, 99.99+% (Aldrich); GaCl₃, 99.9999+% (Alfa); MSA, 99% (Aldrich); sulfuric acid, 98% (Fisher).

Preparation of complexes

All polymer complexes were prepared in a Vacuum Atmospheres Dri-Lab filled with nitrogen due to the moisture sensitivity of the group III metal halides used. A Dri-Train assembly attached to the glovebox circulated the gas to remove residual oxygen and water vapour to a level of 1–5 ppm. Nitromethane was found to be the most suitable solvent for preparation of solutions of the polymer complexes due to its low electron donating ability and high dielectric constant which provide the right medium for the Lewis acid–base reaction and complex dissolution, respectively, as discussed in more detail elsewhere. Solutions of the complexes of BBB or BBL with AlCl₃ or GaCl₃ were prepared as follows. A specific amount of Lewis acid was weighed and added to nitromethane. The mixture was stirred at room temperature until the Lewis acid was completely dissolved. A known weight of BBB or BBL was then added to the solution and the mixture was stirred until the polymer was completely dissolved. Polymer dissolution commences immediately at room temperature as indicated by the change of solution colour from colourless to deep purple within a few seconds of adding the polymer. In the case of concentrated solutions (e.g. >3 wt% polymer) complete dissolution took several days but could be accelerated by heating at 40–60°C. The amount of Lewis acid Y (g) necessary for complete polymer dissolution was calculated using the formula:

$$rX = \frac{Y}{M},$$

where X is the amount of polymer used (g), M is the molecular weight of the polymer repeat unit taken as 334 for BBB and 410 for BBL, M_r is the molecular weight of the Lewis acid and r is the minimum number of moles of Lewis acid required per mole of polymer repeat unit. We found r to be 4.0 ± 0.05 for AlCl₃ or GaCl₃ complexes of BBB or BBL. In the case of very concentrated solutions (>4 wt% polymer) which were very viscous, an r value of 6 or greater was sometimes used to accelerate polymer complexation and dissolution. Solutions of polymer complexes prepared in this way were stable over a period of many months without apparent losses in viscosity or visible polymer precipitation. Solid polymer/Lewis acid complexes were prepared from these solutions by slow evaporation of nitromethane in vacuum at 60°C for 10–12 h. (Throughout this paper, when a ratio ‘Lewis acid:polymer’ is referred to this always means moles of Lewis acid per mole of polymer repeat unit, unless otherwise specified, e.g. 4:1 AlCl₃:BBB means $r=4$ in equation(1)).

BBB or BBL complexes with AlCl₃ or GaCl₃ were also prepared in dichloromethane. In this case the complexes do not dissolve because of the low polarity of the solvent, and complexation proceeds by heterogeneous reaction of the Lewis acid with the solid polymer (dichloromethane also has a very low electron donating ability). Complexes of BBB and BBL prepared in dichloromethane using $r>4.0$ were soluble in nitromethane. For purposes of studying the details of the complexation process we also prepared several BBB/GaCl₃ complexes with r values between 0 and 4.0. The solubility of AlCl₃ in dichloromethane is limited to ~1 wt%. GaCl₃ dissolves readily in dichloromethane and solutions >20 wt% were easy to prepare. The solid complexes were removed from solution and dried in vacuum as described above.

Aliquots of solutions were pressed between microscope glass slides and coverslides for optical microscopy studies. The edges of the coverslides were then sealed to the slides using a Cytoseal 280 mounting medium to prevent solvent evaporation. As a simple shearing experiment, the coverslides of unsealed samples were made to slide over the solutions with the bottom glass slides held stationary. Complexes for t.r. spectroscopy were thin films cast on NaCl substrates from nitromethane solutions or free standing films prepared in dichloromethane. Solid samples for u.v.-visible (vis.) spectroscopy were on the order of 0.1 μm thin films sandwiched between optically flat fused silica substrates. Solutions for u.v.-vis. spectroscopy were 10⁻⁴–10⁻⁵ M in polymer repeat unit, contained in quartz cells. Solutions for n.m.r. spectroscopy contained 1–2 wt% polymer in deuterated nitromethane. Samples for dynamic mechanical analysis (d.m.a.) were thin films (~1 μm thick) sandwiched between glass microscope slides (55 × 20 × 1 mm).

Instruments and methods

Fourier transform infra-red (FTi.r.) spectroscopy was carried out using a Nicolet 20SX FTi.r. spectrometer at a resolution of 4 cm⁻¹. Sets of 32 scans were signal averaged and the resulting spectra were stored on disk. Internal calibration of the frequency scale was done to an accuracy of 0.2 cm⁻¹ with a He–Ne laser. All spectra were taken at room temperature (25–27°C) under nitrogen purge. U.v.-vis. spectra were collected on a Perkin–Elmer Lambda 9 spectrophotometer. N.m.r. spectra were obtained with a General Electric model QE400 spectrometer. For 27Al n.m.r. experiments, a 0.5 M aqueous solution of AlCl₃ was used to obtain a reference as described in a previous paper. The sharp resonance of the Al(H₂O)₆³⁺ ion was thus taken as the zero ppm reference on the chemical shift scale. Thermal analysis was done with a DuPont model 2100 TA system which is based on an IBM PS/2 computer. D.s.c. was also done under a nitrogen purge and at a heating rate of 20°C min⁻¹. An indium (m.p. 156.6°C) standard was used to calibrate the d.s.c. instrument. Intrinsic viscosities were measured at 30.0 ± 0.1°C by using Cannon–Ubbelohde capillary viscometers. Polymer concentrations were chosen such that the elution times were between 1.1 and 1.8 times the elution times of the pure solvents. Optical microscopy studies were carried out by using an Olympus model BH2 microscope equipped with polarizers which were set at the crossed (90°) position. D.m.a. experiments were done by using a Rheometrics.
resonances of free and coordinated AlCl₃ cannot be easily deconvoluted from this spectrum. This is due to the large AlCl₃ excess in solution over the 4:1 AlCl₃:BBB complex stoichiometry. Consequently a large free AlCl₃ resonance overlaps with a coordinated resonance of similar broadness and intensity.

The results of similar experiments in solutions of BBL in AlCl₃/nitromethane are shown in Figure 2. Figure 2a shows the spectrum of a solution of 4.56:1 AlCl₃:BBL. The resonance of free AlCl₃ is again at 98 ppm and the resonance of AlCl₃ coordinated to BBL appears as a broad singlet at 103.5 ppm. Integration of coordinated and free resonances gave a ratio of 1:0.27. Thus the 4.56 moles of AlCl₃ per mole of BBL used to prepare this solution are divided in the ratio 3.6 moles coordinated to each mole of BBL repeat unit and 0.96 moles free. This corresponds approximately to the minimum of 4 moles of Lewis acid per mole of BBL repeat unit necessary for solubilization. The difference (i.e. 3.6:1 versus 4:1) may be due to the error in the integration since the baseline is quite erratic in the region of the resonances, or that a complex with stoichiometry slightly less than 4:1 is in fact soluble.

The stoichiometry used in the solution of Figure 2b was 7.06:1 AlCl₃:BBL. The resonances of free AlCl₃ at 98 ppm and of AlCl₃ coordinated to BBL around 103.5 ppm are visible in this spectrum also. The peak overlap and erratic baseline make it difficult to reliably deconvolute the signals for integration.

The results of Figures 1 and 2 show that the stoichiometry of the solubile BBB and BBB complexes with AlCl₃ is close to 4 moles of Lewis acid per mole of polymer repeat unit. A question to be answered in the next section is how the Lewis acid coordinates to BBB or BBL and what the resulting complex structures are. We note from Scheme 1 that there are six Lewis base heteroatoms in the repeat unit of each polymer (two carbonyl oxygens, two amide nitrogens and two imine nitrogens) which are possible coordination sites.

Solid state studies. The F TI.r. spectrum of BBB is shown in Figure 3a and that of BBL is shown in Figure 4a. The spectra of these polymers are complicated and unambiguous assignment of all of the bands would be very difficult. It is known that up to six isomers of the BBB and two isomers of the BBL repeat unit structures in Scheme 1 may arise during synthesis 15,27. These isomers contribute to the complexity of the F T I.r. spectra.
Lewis acid coordination complexes. 3: M. F. Roberts and S. A. Jenekhe

The most prominent band in the spectrum of BBB is at 1702 cm\(^{-1}\) and is due to carbonyl stretching, \(v(C=O)\). In BBL this band also appears at 1702 cm\(^{-1}\). There are several bands of lower intensity adjacent to this mode in BBB at 1615, 1578, 1547 and 1500 cm\(^{-1}\). Similar bands appear in the spectrum of BBL at 1582, 1559 and 1501 cm\(^{-1}\). Kim\(^{25}\) has assigned the band at 1582 cm\(^{-1}\) in BBL to stretching of the imine carbon–nitrogen double bond, \(v(C=N)\). The same assignment may be made for the 1578 cm\(^{-1}\) band of BBB. The surrounding bands (1615, 1547 and 1500 cm\(^{-1}\) in BBB, and 1559 and 1501 cm\(^{-1}\) in BBL) are due to aromatic carbon–carbon stretching and other skeletal modes associated with the \(C=N\) bonds.

At lower frequencies there are bands at 1456 and 1437 cm\(^{-1}\) in the spectrum of BBB, and at 1457 and 1413 cm\(^{-1}\) in that of BBL. The origin of these bands is, most probably, stretching of the amide carbon–nitrogen bonds, \(v(C-N)\). Bands in the region 1380–1265 cm\(^{-1}\) are associated with carbon–nitrogen stretching in tertiary arylamines.\(^{43}\) BBB exhibits bands at 1380, 1352 and 1314 cm\(^{-1}\), and bands in this region appear at 1375, 1324 and 1307 cm\(^{-1}\) for BBL. Therefore these bands arise from stretching of the various carbon–nitrogen single bonds, \(v(C-N)\), in the BBB and BBL structures. Skeletal vibrations also appear at 1238 and 993 cm\(^{-1}\) in the BBB spectrum, and at 1239, 1223 and 995 cm\(^{-1}\) in the BBL spectrum. An in-plane \(C-H\) bend\(^{43}\) of BBB is at 1147 cm\(^{-1}\) and BBL has such bands at 1171 and 1152 cm\(^{-1}\). Out-of-plane \(C-H\) wag modes of the phenyl rings are at 880 and 812 cm\(^{-1}\) in BBB, and at 919 and 864 cm\(^{-1}\) in BBL.\(^{43}\) The 754 cm\(^{-1}\) band in both polymers is attributable to the out-of-plane \(C-H\) wag of the two adjacent carbon–hydrogen bonds on the naphthalene rings.\(^{43}\) The preceding band assignments for BBB and BBL are summarized in Table 1.

The FTIR spectrum of the 4:1 GaCl\(_3\):BBB complex is shown in Figure 3b. The spectrum is quite different from that of BBB in Figure 3a. To study the effects of coordination of GaCl\(_3\) on the BBB spectrum, the 1:1, 2:1 and 3:1 GaCl\(_3\):BBB complexes were also prepared and their spectra are shown in Figures 5a, b and c, respectively.

The spectra of Figures 3 and 5 were thus used to analyse the gradual structural changes as BBB is complexed with GaCl\(_3\) from the pure BBB up to the 4:1 (stoichiometric) complex which is soluble in organic solvents.

At 1:1 stoichiometry in Figure 5a, the \(v(C=O)\) band of BBB is split into two components, one at 1709 cm\(^{-1}\) and one at 1734 cm\(^{-1}\). By comparing the band intensities of the sample of Figure 5a and that of the pure BBB subsequently regenerated from the same complex film, we found that the 1709 and 1734 cm\(^{-1}\) bands of the 1:1 complex are, respectively, 71 and 55% as intense as the 1702 cm\(^{-1}\) band of pure BBB. At 2:1 stoichiometry in Figure 5b, the \(v(C=O)\) band is at 1739 cm\(^{-1}\) with a shoulder at slightly lower wavenumber. The 1739 cm\(^{-1}\) band is more intense (125%) than the \(v(C=O)\) band of uncomplexed BBB. In the 3:1 complex of Figure 5c a single sharp band is observed at 1740 cm\(^{-1}\) with evidence of only a very minor shoulder to the lower frequency side. This band is again more intense (132%) than the

Nonetheless, several important bands may be assigned and provide sensitive probes of the polymer structures.

<table>
<thead>
<tr>
<th>Band (cm(^{-1}))</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1702</td>
<td>(v(C=O)), carbonyl carbon–oxygen stretching</td>
</tr>
<tr>
<td>1578</td>
<td>(v(C=N)), imine carbon–nitrogen stretching</td>
</tr>
<tr>
<td>1615, 1547, 1500</td>
<td>Aromatic carbon–carbon and carbon–nitrogen skeletal modes</td>
</tr>
<tr>
<td>1456, 1437</td>
<td>(v(C-N)) of amide carbon–nitrogen bonds</td>
</tr>
<tr>
<td>1380, 1352, 1304</td>
<td>(v(C-N)) of carbon–nitrogen single bonds</td>
</tr>
<tr>
<td>1238, 993</td>
<td>Mixed skeletal vibrations</td>
</tr>
<tr>
<td>1147</td>
<td>In-plane (C-H) bending</td>
</tr>
<tr>
<td>880, 812</td>
<td>Out-of-plane (C-H) wagging</td>
</tr>
<tr>
<td>754</td>
<td>(\delta(C-H)), out-of-plane wag of naphthalene (C-H) bonds</td>
</tr>
</tbody>
</table>

Table 1. Bands of the FTIR spectra of BBB and BBL and their assignments
are changes in the bands at 1456 and 1437 cm⁻¹. In the spectrum of BBB, the 1437 cm⁻¹ band has disappeared and a sharp band is evident at 1458 cm⁻¹ with a shoulder to the higher wavenumber side. This shoulder gradually emerges in the 3:1 and 4:1 complexes as a band at 1469 cm⁻¹ which overlaps with the more intense 1458 cm⁻¹ band.

The bands at 1437 and 1456 cm⁻¹ in the spectrum of BBB are assigned to the carbon–nitrogen stretch of the amide (CON) units. The observed changes to these bands upon complexation indicate an increase in bond order. This may be the result of increased delocalization of the nitrogen lone pair electrons along the amide carbon–nitrogen bonds. Delocalization of the nitrogen lone pair electrons occurs for resonance stabilization of the amide units. This resonance reduces the likelihood of electrophilic attack at the nitrogens. This is further ensured by the steric inaccessibility of these nitrogens due to the very close surrounding atoms. Thus, as in the case of linear polyamides, complexation of the amide segments of BBB (there are two per repeating unit, as shown in Scheme 1) with GaCl₃ results in coordination of the Lewis acid to the carbonyl oxygens and not the nitrogens. This is accompanied by a rehybridization of the atoms and resonance stabilization of adjacent C=O and carbon–nitrogen bonds.

The 1578 cm⁻¹ stretching mode of the imine carbon–nitrogen bonds, ν(C=N), of BBB is affected by complexation with GaCl₃. To examine the changes to this band it is necessary to also look at changes in the adjacent skeletal bands at 1547 and 1615 cm⁻¹. In the 1:1 complex of Figure 5a, the 1547 cm⁻¹ band of BBB is still evident (at 1541 cm⁻¹), but the ν(C=N) band has merged with the 1615 cm⁻¹ band and has shifted to 1597 cm⁻¹. This band has a broad shoulder at the lower wavenumber side. The 1615 cm⁻¹ band has increased in intensity relative to BBB. In the 2:1 complex of Figure 5b, the 1547 cm⁻¹ band becomes quite weak and the 1615 cm⁻¹ band has gained further intensity. The new ν(C=N) mode appears at 1592 cm⁻¹ in this spectrum. In the 3:1 complex of Figure 5c the 1547 cm⁻¹ band has disappeared completely and a new band at 1577 cm⁻¹ has emerged in its place. The ν(C=N) band is at 1591 cm⁻¹, overlapping with the other skeletal mode which is now at 1613 cm⁻¹. Finally, in the 4:1 complex (Figure 3b) there are bands at 1576, 1591 and 1613 cm⁻¹ in this region of the spectrum. The other skeletal band in this region of the BBB spectrum, namely the 1500 cm⁻¹ band, shifts to 1501 cm⁻¹ in the 1:1 complex, 1508 cm⁻¹ in the 2:1 complex, and 1512 cm⁻¹ in the 1:3 and 1:4 complexes.

The shift of the 1576 cm⁻¹ ν(C=N) band of BBB by 15 cm⁻¹ to higher frequency in the spectrum of the 1:4 GaCl₃:BBB complex indicates coordination of the imine nitrogens by GaCl₃. The increase in frequency arises from a rehybridization of the nitrogen and adjacent atoms and a consequent increase in C=N bond order, caused by withdrawal of the nitrogen lone pair electrons by the Lewis acid. This type of shift to higher frequency has been observed on complexation of imine nitrogens by Lewis acids in many structures, e.g. complexes of conjugated Schiff bases with BF₃ and polyazomethines complexed with GaCl₃ and complexes of poly(p-phenylene benzobisthiazole) with AlCl₃ and GaCl₃.

The carbon–nitrogen single bond stretching bands, ν(C=N) of BBB at 1380, 1352 and 1314 cm⁻¹ exhibit small changes in their frequencies when the polymer is complexed with GaCl₃. In the 1:1 complex they are at...
Table 2. U.v.-vis. absorption data for BBB, BBL and their complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>(\varepsilon) (1 mol(^{-1}) cm(^{-1}))</th>
<th>(\pi) (cm(^{-1}))</th>
<th>(E_{\varepsilon}) (nm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBB in GaCl(_3)/NM(^a)</td>
<td>517</td>
<td>3.9 x 10(^4)</td>
<td></td>
<td>606</td>
</tr>
<tr>
<td>BBB in AlCl(_3)/NM(^a)</td>
<td>520</td>
<td>4.0 x 10(^4)</td>
<td></td>
<td>607</td>
</tr>
<tr>
<td>BBB(^b)</td>
<td>518</td>
<td>5.7 x 10(^5)</td>
<td></td>
<td>686</td>
</tr>
<tr>
<td>BBB:GaCl(_3)/(^a)</td>
<td>531</td>
<td>8.7 x 10(^6)</td>
<td></td>
<td>621</td>
</tr>
<tr>
<td>BBB:AlCl(_3)/(^a)</td>
<td>531</td>
<td>8.7 x 10(^6)</td>
<td></td>
<td>621</td>
</tr>
<tr>
<td>BBL in GaCl(_3)/NM(^m)</td>
<td>546</td>
<td>4.9 x 10(^4)</td>
<td></td>
<td>580</td>
</tr>
<tr>
<td>BBL in AlCl(_3)/NM(^m)</td>
<td>545</td>
<td>4.9 x 10(^4)</td>
<td></td>
<td>581</td>
</tr>
<tr>
<td>BBL(^b)</td>
<td>561</td>
<td>5.8 x 10(^5)</td>
<td></td>
<td>704</td>
</tr>
<tr>
<td>BBL:GaCl(_3)/(^a)</td>
<td>557</td>
<td>8.7 x 10(^6)</td>
<td></td>
<td>645</td>
</tr>
<tr>
<td>BBL:AlCl(_3)/(^a)</td>
<td>544</td>
<td>8.5 x 10(^6)</td>
<td></td>
<td>666</td>
</tr>
</tbody>
</table>

NM, nitromethane
\(^a\) Molar absorptivity (\(\varepsilon \)) and absorption coefficient (\(\pi \)) at \(\lambda_{\text{max}} \)
\(^b\) Low energy absorption band edge
\(^c\) 10\(^{-4}\) M solution
\(^d\) Solid film

The effects of complexation on the absorption bands of BBB are analogous to the effects observed in complexes of BBB. Coordination of GaCl\(_3\) to the carbonyl oxygens of BBB effects a shift of the \(\nu(C=O) \) band from 1702 cm\(^{-1}\) in Figure 4a to 1740 cm\(^{-1}\) in Figure 4b. The amide carbon–nitrogen bands at 1458 and 1414 cm\(^{-1}\) in BBB merge into a broader band at 1440 cm\(^{-1}\) on complexation. The amide \(\nu(C= N) \) band of BBB at 1582 cm\(^{-1}\) shifts to 1604 cm\(^{-1}\) in the BBB/GaCl\(_3\) complex spectrum of Figure 4b. This band is very intense compared to the uncomplexed \(\nu(C= N) \) mode of BBB. The blue shift of 22 cm\(^{-1}\) indicates an increase in C=N bond order and coordination of the Lewis acid to the imine nitrogens as in BBB. The \(\nu(C=N) \) modes at 1375, 1324 and 1307 cm\(^{-1}\) of BBB shift to 1398, 1356 and 1294 cm\(^{-1}\), respectively, on complexation with GaCl\(_3\). The various other skeletal modes of BBB are affected by complexation in an analogous fashion to bands of BBB discussed earlier. Most notably, the 1239 cm\(^{-1}\) band shifts to 1249 cm\(^{-1}\) and the 993 cm\(^{-1}\) skeletal mode of BBB is increased, the 993 cm\(^{-1}\) skeletal mode of BBB shifts gradually to 999 cm\(^{-1}\) in the spectrum of the 4:1 complex. The 754 cm\(^{-1}\) out-of-plane C–H bending of the naphthalene ring of BBL shifts to 756 cm\(^{-1}\) and has greater intensity in Figure 4b relative to adjacent bands than in the BBB spectrum of Figure 4a.

Electronic structures of BBB and BBL complexes

The wavelengths of maximum absorption (\(\lambda_{\text{max}} \)) and the low energy band edges or optical bandgaps (\(E_{\varepsilon} \)) of BBB, BBL and their complexes are given in Table 2. The optical absorption spectrum of \(10^{-4} \) M BBB in GaCl\(_3\)/nitromethane is shown in Figure 6. The absorption spectrum of \(10^{-4} \) M BBB in AlCl\(_3\)/nitromethane is similar to that of BBB in GaCl\(_3\)/nitromethane and has been reported earlier\(^7\). The \(\lambda_{\text{max}} \) and \(E_{\varepsilon} \) values of BBB in both solutions are very close, as seen in Table 2. Thus BBB/GaCl\(_3\) complex has essentially the same electronic structure in solution as its AlCl\(_3\) or GaCl\(_3\) complex. The optical absorption spectrum of BBL in GaCl\(_3\)/nitromethane (\(10^{-4} \) M) is shown in Figure 6 and was almost indistinguishable from that of BBL in AlCl\(_3\)/nitromethane. The data in Table 2 show that the \(\lambda_{\text{max}} \) and \(E_{\varepsilon} \) values are practically the same for these solutions. Therefore the BBL/GaCl\(_3\) and BBB/GaCl\(_3\) complexes have very similar electronic structures in solution. The spectra of Figure 6 show that there is considerable overlap of the lowest energy absorption bands of BBB and BBL complexes in solution. The \(\lambda_{\text{max}} \) of BBB complexes are blue-shifted by

![Figure 6](https://example.com/figure6.png)
Lewis acid coordination complexes. 3: M. F. Roberts and S. A. Jenekhe

25–29 nm relative to the BBL complexes. However, the sharp decrease in absorption at wavelengths above \(\lambda_{\text{max}} \) for BBL complexes results in a bandgap of higher energy than for BBB complexes. This lower bandgap of BBB complexes in solution implies better conjugation in BBB, which suggests that BBB complexes have an extended chain conformation in solution since this is the necessary chain geometry to achieve better conjugation than BBL whose molecules are rigid and rod-like.

Figure 7 shows the absorption spectra of thin films of BBB and the solid BBB/GaCl\(_3\) (1:4) complex. The \(\lambda_{\text{max}} \) and \(E_g \) values obtained from these spectra are given in Table 2. The \(\lambda_{\text{max}} \) and \(E_g \) values of the solid BBB/AICl\(_3\) complex are also given in Table 2, and the spectrum of this complex was exactly the same as that of the BBB/GaCl\(_3\) complex in Figure 7. Thus, as in solution the BBB/AICl\(_3\) and BBB/GaCl\(_3\) solid complexes have similar electronic structures. The absorption coefficient, \(\alpha \), of the BBB/GaCl\(_3\) complex of Figure 7 was estimated by dividing absorbance by the thickness of the BBB film subsequently regenerated from the complex. This involves the assumption that complexation did not affect film thickness. However, the absorption coefficient calculated in this way represents the absorption per unit thickness of pure BBB and therefore gives insight into the effect of complexation on the absorption coefficients of the BBB chromophore. Comparison of the spectra of Figure 7 shows that complexation causes a 55% increase in absorption coefficient at \(\lambda_{\text{max}} \). This indicates that complexation increases the transition dipole moment of BBB. There is also an increase of 13 nm in \(\lambda_{\text{max}} \) while the band edge decreases by 65 nm. The effect of coordination of Lewis acid to the BBB chains is therefore to decrease conjugation due to the effect of electron withdrawal on the delocalized \(\pi \)-electron cloud in BBB molecules.

Figure 8 shows the absorption spectra of thin films of BBL, BBL/AICl\(_3\) complex and BBL/GaCl\(_3\) complex. The \(\lambda_{\text{max}} \) and \(E_g \) values from these spectra are given in Table 2. In this case the AICl\(_3\) and GaCl\(_3\) complexes exhibit some discernible differences although they are qualitatively similar in terms of the effects of complexation on the BBL spectrum. About 50% increases of the absorption coefficient at \(\lambda_{\text{max}} \) are observed for both complexes. The lowest energy absorption band of both complexes is blue-shifted relative to that of BBL. Thus the effect of complexation is to decrease conjugation and increase the transition dipole moment of BBL. The reasons for the differences between the BBL/AICl\(_3\) and BBL/GaCl\(_3\) spectra are not obvious and probably arise from differences in the morphology of the complexes.

In the solid state BBL is known to be highly crystalline\(^{15,16}\) whereas random-coil BBB molecules form amorphous polymer films\(^{12–14}\). This is in contrast to the solution phase where BBB molecules are chain extended. The effect of coiling of the BBB molecules when the polymer aggregates is evident in the optical spectra presented here. As discussed earlier, BBB complexes are more highly conjugated than BBL complexes in solution, as evidenced by the differences in their optical absorption edges. However, when these complexes are aggregated into solid films or precipitated as films of pure BBB or BBL, increased intermolecular interactions cause red shifts of \(\lambda_{\text{max}} \) and \(E_g \) compared to the solution values. The effect is, however, greater for BBL. The band edge of solid BBL is red-shifted by 18 nm from that of BBB. Therefore, although BBB is more highly conjugated than BBL in solution, coiling of the BBB molecules on aggregation results in decreased \(\pi \)-electron delocalization between the repeat units, and BBL which retains its rigid-rod conformation on aggregation is the more conjugated structure of the two in the solid state. The band edges of the solid BBL complexes are also red-shifted from those of the BBB complexes and hence it appears that the solid BBB complexes have contracted coil structures in which there is poorer \(\pi \)-electron delocalization than in BBL complexes.

Solution properties of BBB and BBL complexes

dilute solutions. The intrinsic viscosities of BBB and BBL in various solvents are listed in Table 3. In these experiments the minimum amount of Lewis acid was used in the Lewis acid/nitromethane solvents to prevent precipitation of polymer during the experiments. It proved impractical to use just the stoichiometric requirement of Lewis acid (i.e. \(r=4 \)) due to the tendency of BBB and BBL to precipitate under the influence of atmospheric moisture, and therefore an excess of ~20% Lewis acid (\(r \approx 4.8 \)) was used to prevent precipitation from occurring.

A large variation in intrinsic viscosity of BBB with solvent was observed. Berry \textit{et al.}\(^{12,19}\) have proposed that BBB can be modelled as a non-draining coil polymer...
and the intrinsic viscosity may be given by the relation:

$$[\eta] = \Phi_0 \left(\frac{<a^2>_{q}^{3/2}}{M}g^2 \right)$$

where Φ_0 is the universal constant, M is the molecular weight, $(<a^2>_{q})^{3/2}$ is the root-mean-square radius of gyration of the unperturbed coil and g is the coil expansion factor. The factor g^2 is proportional to the hydrodynamic volume of the coils and hence $[\eta]$ is directly related to coil volume. The data in Table 3 show that $[\eta]$ of BBB is lowest in sulfuric acid, which implies that the BBB chains are highly contracted in this solvent. Berry and co-workers have observed that as the concentration of sulfuric acid is decreased from 100 to 92%, the BBB coils contract and may even aggregate.

Table 3

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Solvent</th>
<th>$[\eta]$ (dl g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBB</td>
<td>97% sulfuric acid</td>
<td>2.64</td>
</tr>
<tr>
<td></td>
<td>99% MSA</td>
<td>5.65</td>
</tr>
<tr>
<td></td>
<td>1 wt% AICI$_3$ in NM</td>
<td>6.10</td>
</tr>
<tr>
<td></td>
<td>1 wt% GaCl$_3$ in NM</td>
<td>4.90</td>
</tr>
<tr>
<td>BBL</td>
<td>99% MSA</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td>1 wt% AICI$_3$ in NM</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td>1 wt% GaCl$_3$ in NM</td>
<td>8.30</td>
</tr>
</tbody>
</table>

Concentrated solutions. The different chain topologies of BBB and BBL are also expected to lead to quite different phase behaviour of the two polymers in concentrated solutions. According to the molecular theory of liquid crystals, BBB, by virtue of its rigid-rod topology should exhibit lyotropic liquid crystallinity. BBB on the other hand, being a flexible or at least a semiflexible chain polymer due to its semiflexible structure and the inherent non-linearity of the chains is not expected to show liquid crystallinity.

Extensive studies of the concentrated solution behaviour of BBB have revealed no evidence of liquid crystallinity in protonic acids19,23,24 Jenekhe and Johnson32 reported shear thinning of solutions of BBB in AICI$_3$/nitromethane and GaCl$_3$/nitromethane at concentrations of > 5 wt% polymer, which may indicate shear induced alignment of the repeat units. We have investigated solutions of up to 10 wt% BBB in AICI$_3$/nitromethane and GaCl$_3$/nitromethane. Optical microscope study of these solutions revealed that they were isotropic.

Despite the rigid-rod nature of BBB, there have been no reports of liquid crystallinity in its protonic acid solutions, to the best of our knowledge. Attempts to observe liquid crystallinity in protonic acid solutions of BBB were hampered by the poor solubility of BBB in these media. However BBL does exhibit liquid crystallinity in Lewis acid/nitromethane solutions.22 We prepared solutions up to 12 wt% BBL in AICI$_3$/nitromethane and in GaCl$_3$/nitromethane. A liquid crystalline phase with a typical nematic mesophase texture was evident above the critical concentration in both solvents. This texture was bright red in colour and is shown in Figure 9.

The critical concentration of BBL in AICI$_3$/nitromethane, defined as the highest polymer concentration above which there is evidence of liquid crystallinity49 and measured under zero shear conditions, is 8 wt%. Samples of 8 wt% solutions prepared for optical microscopy, as described in the Experimental section, exhibited shear alignment when prepared. The samples, which were prepared by compression and therefore shearing of the solutions, were bright red and virtually textureless as viewed through the crossed polarizers of the optical microscope, immediately after preparation. After a period of ~10 min the alignment relaxed and the solutions became isotropic, losing the bright red colour transmitted through the crossed polarizers of the optical microscope. Solutions of concentrations between 4 wt% and 8 wt% BBL in AICI$_3$/nitromethane showed such temporary alignment. Below 4 wt% the solutions were isotropic and showed no visible tendency towards shear alignment even when repeatedly sheared. At concentrations above 8 wt% the phase equilibria were quite different. Small islands of liquid crystalline regions were apparent in an 8.25 wt% solution even after allowing several hours for relaxation of shear alignment. A 9 wt% solution exhibited nematic liquid crystallinity with the anisotropic phase constituting about 30 vol% of the solution. A 10 wt% solution was ~90% anisotropic and a 12 wt% solution was gel-like and completely anisotropic. The critical concentration of BBL in GaCl$_3$/nitromethane is between 9 wt% and 9.5 wt% polymer. Solutions in GaCl$_3$/nitromethane of > 5 wt% showed evidence of temporary shear alignment when prepared.

Flory's molecular theory49 can be used to gain some insight into the nature of these liquid crystalline solutions. The axial ratio, x, of a rigid-rod molecule may be estimated using the formula49:

$$x = \left(\frac{M}{M_r} \right) \left(\frac{l_u}{d} \right)$$

where M is the molecular weight, M_r is the critical radius of gyration, l_u is the contour length, and d is the hydrodynamic diameter.
Lewis acid coordination complexes. 3: M. F. Roberts and S. A. Jenekhe

where \(M \) is the molecular weight, \(M_u \) is the molecular weight of the repeat unit, \(l_u \) is the length of the repeat unit and \(d \) is the average chain diameter. We estimated the molecular weight of our BBL sample to be 75,000 in the Experimental section. This estimate was based on an assumed hydrodynamic chain diameter of 12 Å which we equate with \(d \). \(M_u \) is 334. In an earlier paper an \(l_u \) of 12.5 Å was found for PBZT. Comparison of the molecular structures of BBL and PBZT shows that \(l_u \) of BBL is very close to that of PBZT and therefore we use the value of 12.5 Å as an estimate. From equation (4), \(x \) is then 234 for BBL. Flory predicted that \(x \) is the sole factor which determines the critical concentration by49:

\[
\phi^* = \frac{8}{x} \left(1 - \frac{2}{x}\right)
\]

where \(\phi^* \) is the critical concentration in volume fraction. Equation (5) predicts \(\phi^* \) for BBL to be 3.4 vol%. The measurements we obtained show that the critical concentration of BBL is 8 wt% in \(\text{AlCl}_3/\text{nitromethane} \) and 9-9.5 wt% in \(\text{GaCl}_3/\text{nitromethane} \). To convert these values to vol% the following densities are used: 1.31 g cm\(^{-3}\) for BBL, 1.35 g cm\(^{-3}\) for \(\text{AlCl}_3/\text{nitromethane} \) and 1.43 g cm\(^{-3}\) for \(\text{GaCl}_3/\text{nitromethane} \) at the Lewis acid concentrations used. The \(\phi^* \) values are 8.2 vol% in \(\text{AlCl}_3/\text{nitromethane} \) and 9.7-10.3 vol% in \(\text{GaCl}_3/\text{nitromethane} \). The corresponding respective axial ratios are 96 and 78-82 from equation (5). Obviously these \(\phi^* \) values are much higher and the axial ratios are much lower than for pure BBL calculated above. This is evidence that the pendent Lewis acid and any associated solvent act as bulky side groups to BBL in solution, effectively increasing the chain diameter and so decreasing the axial ratio. Using equation (4), the effective hydrodynamic diameter of BBL in \(\text{AlCl}_3/\text{nitromethane} \) is 29 Å and that of BBL in \(\text{GaCl}_3/\text{nitromethane} \) is ~35 Å. These values are much larger than the assumed \(d \) of 12 Å for uncomplexed BBL. Our view is that nitromethane may be weakly associated with the BBL complex chains, forming solvated species of approximately elliptical cross-section, the cross-sectional areas being much larger than that of the BBL chain.

Thermal properties of BBB and BBL complexes

Figure 10a shows a d.s.c. thermogram of BBB. There are no transitions up to 350°C. Others12-14 have studied BBB by using X-ray diffraction techniques and shown that there are no thermal transitions in the range 30-500°C. Figure 10b shows a d.s.c. thermogram of the 4:1 \(\text{GaCl}_3/\text{BBB} \) complex. In contrast to BBB this complex has a glass transition with a midpoint (T\(_g\)) at 30°C. Onset and endpoint values for this transition are given in Table 4. The d.s.c. data were reproducible on repeated thermal cycling up to ~175°C, above which there is decomposition of the complex. The measured value of T\(_g\) was found to vary by up to ~7°C from sample to sample and
Lewis acid coordination complexes. 3: M. F. Roberts and S. A. Jenekhe

Table 4. Temperatures (°C) relevant to the glass transitions of the 4:1 GaCl₃:BBB and GaCl₃:BBL solid complexes

<table>
<thead>
<tr>
<th></th>
<th>BBB/GaCl₃ complex</th>
<th>BBL/GaCl₃ complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>By d.s.c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Midpoint (Tₛ)</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Endpoint</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>By d.m.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_(0.16 Hz)</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>T_(onset) (0.16 Hz)</td>
<td>-14</td>
<td>-18</td>
</tr>
<tr>
<td>T_(onset) (1.6 Hz)</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>T_(onset) (16 Hz)</td>
<td>-11</td>
<td>-15</td>
</tr>
<tr>
<td>T_(onset) (16 Hz)</td>
<td>24</td>
<td>37</td>
</tr>
<tr>
<td>Activation energy (kJ mol⁻¹)</td>
<td>293</td>
<td>448</td>
</tr>
</tbody>
</table>

Figure 11. Loss tangent (tan δ) and storage modulus (E') plots for the 4:1 GaCl₃:BBB complex obtained at a frequency of 0.16 Hz. Units of E' are arbitrary due to the sample geometry employed for repeated runs on a given sample. Figure 11 shows the temperature dependent dynamic mechanical properties of the 4:1 GaCl₃:BBB complex. The glass transition of the complex is evident from the characteristic loss tangent peak and step decrease in modulus. The temperature at which the loss tangent is a maximum, Tₛ, is normally regarded as the glass transition temperature. Such a Tₛ and the temperature at which the storage modulus begins to decrease, T_(onset), are given in Table 4. Measurements similar to those of Figure 12 were also made at frequencies of 1.6 and 16 Hz. Tₛ and T_(onset) values obtained from these measurements are presented in Table 4. These temperatures vary with frequency, as expected for a glass transition.

The appearance of glass transitions in the BBB and BBL complexes with GaCl₃ arises from the dramatic reduction in intermolecular forces which occurs when the complexes are formed. We have observed glass transitions for the complexes of several other polymers with Lewis acids such as PBZT and polyamides. Molecular modelling of the complexes of PBZT showed that complexation results in amorphous aggregate structures with lower cohesive energy densities than PBZT. This accounts for the high solubility and low Tₛ of the complexes compared to the pure polymers. The present results show that the effect also holds for the complexes of BBB and BBL. One way to estimate the CED of the 4:1 GaCl₃:BBL complex. There is a glass transition with a Tₛ at 15°C. This transition is reproducible on repeated thermal cycling below ~150°C. The onset and endpoint temperatures are tabulated in Table 4. Dynamic mechanical measurements on this complex taken at a frequency of 0.16 Hz are shown in Figure 13. The loss tangent peak and step decrease of the storage modulus signifying the glass transition are evident in the data. The Tₛ and T_(onset) values are given in Table 4 for this frequency and for measurements taken at frequencies of 1.6 and 16 Hz. An activation energy of 448 kJ mol⁻¹ for the transition is found from these data.

Figure 12a shows a d.s.c. thermogram of BBL. As has been seen by others there are no observable thermal transitions. Figure 12b shows a d.s.c. thermogram of the 4:1 GaCl₃:BBL complex.
polymers is to use the group contribution method described by Van Krevelen. To calculate CEDs for aluminum- and gallium-containing molecules, the Fedors type contributions are appropriate. By this method the CED of BBB is 2251.7 cm⁻² and that of BBL is 3279.7 cm⁻². The CEDs of fully complexed (4:1 Lewis acid:polymer) BBB and BBL are 916 and 929.7 cm⁻³ respectively. Complexation with Lewis acids is therefore predicted to lower the CED of BBB and BBL by 59 and 72%, respectively. This supports our contention that the very low Tgs of BBB and BBL complexes arise from reduced intermolecular interactions compared to the pure polymers. Furthermore, the solubility parameters (δ, the square root of CED) of BBB and BBL complexes are 30.2 and 30.5 J¹/² cm⁻³, respectively. These values are reasonably close to that of nitromethane (25.6 J¹/² cm⁻³), whereas the δ values of the pure polymers are much higher (47.4 and 57.3 J¹/² cm⁻³, respectively) and preclude solubility in nitromethane.

The glass transition of the BBB/GaCl₃ complex has a higher activation energy than that of the BBB/GaCl₃ complex. The lower value for the BBB/GaCl₃ complex is due to the flexibility of the BBB chains arising from the flexible linkages between repeat units. The stiffer BBL chains do not have such rotational freedom. The d.s.c. data indicate that the BBB/GaCl₃ complex has a higher Tg than the BBL/GaCl₃ complex. However, there was significant variability of the broadness and midpoint value from sample to sample for these complexes. For example, Tg values as low as 23°C were observed for the BBB/GaCl₃ complex and as high as 25°C for the BBL/GaCl₃ complex. On the other hand, the dynamic mechanical data consistently show that the Tg of the BBB/GaCl₃ complex is lower at any frequency than the Tg of the BBL/GaCl₃ complex. This also applies to the added flexibility of the BBB chains compared to BBL since chain flexibility is a structural factor which is well known to lower the Tgs. The data of Table 4 and Figure 13 also show that the glass transition of the BBB/GaCl₃ complex occurs over a wider temperature range than the glass transition of the BBB/GaCl₃ complex, i.e. although the Tg of the BBL/GaCl₃ complex is always higher than the Tg of the two, the Tg of the BBB/GaCl₃ complex is lower at each frequency.

CONCLUSIONS

BBB and BBL form electron donor–acceptor complexes with the Lewis acids AlCl₃ and GaCl₃. These complexes are highly soluble in organic solvents at ratios of 4:1 or greater of Lewis acid:polymer repeat unit. At the 4:1 stoichiometry the metal atoms of the Lewis acids are coordinated to the polymers, one to each of four electron-rich heteroatoms in the polymer repeat units, namely the carbonyl oxygens and imine nitrogens.

Despite the similarity of the chemical structures of BBB and BBL, several important differences arise in the structures and properties of their complexes due to the differences in the polymer chain topologies. BBB is a semiladder polymer and as such has rotatable bonds between repeat units which give the polymer chains a degree of flexibility. As a result BBB chains are chain extended in solution to a degree which depends on the solvent employed, whereas in the solid state the coils are highly contracted and consequently π-conjugation is poorer. BBL and its complexes are by contrast ladder structures with inflexible chains, exhibiting rigid-rod conformations in solution and in the solid state. The flexibility of the BBB chains also results in lower activation energy of glass transition, and Tgs for the BBB/GaCl₃ complex compared to the BBL/GaCl₃ complex. These differences in chain topologies are also manifested in the physical properties of BBB and BBL. For example, the third-order non-linear optical susceptibility χ(3)(−3ω,ω,ω) of thin films of both polymers, prepared from solutions of their complexes, measured by third harmonic generation spectroscopy, was found to be lower for BBB by a factor of 2 than BBL over the entire wavelength range from 1.0 to 2.4 μm (ref. 30).

The observed properties of the BBB and BBL complexes have broad implications for the processability and tractability of these polymers. The pure polymers can easily be regenerated from the complexes by washing with a suitable non-solvent such as water. Thus in one sense the complexes may be viewed as processing intermediates for the pure polymers, to which they may easily be converted after processing to the desired form. The feasibility of this method has already been amply demonstrated by the preparation of good quality films and coatings for electronics, photoconductivity, non-linear optics, and electroluminescence. The liquid crystalline solutions of BBB complexes are ideal for preparing films and fibres of high strength and stiffness and the mechanical properties of BBB may also be optimized by processing from concentrated solutions of its complexes. The low Tgs of the solid BBB/GaCl₃ and BBL/GaCl₃ complexes also offer the possibility of melt processing of the polymers.

ACKNOWLEDGEMENTS

We thank John Osaheni and Ashwini Agrawal for synthesis of the BBB and BBL polymers, respectively. This research was supported in part by the National Science Foundation (CTS 9311741), the NSF Center for Photoinduced Charge Transfer (Grant CHE 912-0001), and an Elon Huntington Hooker fellowship to MFR.

REFERENCES

4 Arnold, F. E. and Van Deuen, R. L. Macromolecules 1969, 2, 497
Lewis acid coordination complexes. 3: M. F. Roberts and S. A. Jenekhe

18 Nayak, K. and Mark, J. E. Makromol. Chem. 1986, 187, 1547
24 Wong, C. P. and Berry, G. C. Polymer 1979, 20, 229
40 Roberts, M. F. and Jenekhe, S. A. Macromolecules 1991, 24, 3142
42 Schmerling, L. Ind. Eng. Chem. 1948, 40, 2072
48 Hagler, A. T. and Lapicrella, A. Biopolymers 1976, 15, 1167
53 Nielsen, L. E. ’Mechanical Properties of Polymers and Composites’, Vol. 1, Marcel Dekker, New York, 1974, pp. 20–21
56 Osaheni, J. A. and Jenekhe, S. A. Macromolecules 1993, 26, 4726
57 Osaheni, J. A. and Jenekhe, S. A. Macromolecules 1994, 27, 739