The radiation-induced polymerization of dimethylcyclosiloxanes in the liquid state: 3. Copolymerization of D₃ with D₄ and D₄ with D₅, reactivities and interpretation

D. M. Naylor* and V. T. Stannet†
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA

and A. Deffieux‡ and P. Sigwalt
Laboratoire de Chimie Macromoléculaire Associé au CNRS, Université Pierre et Marie Curie, 75230 Paris Cedex 05, France
(Received 24 July 1992; revised 2 September 1993)

The radiation-induced copolymerization of octamethylcyclotetrasiloxane (D₄) with hexamethylcyclotrisiloxane (D₃) and octamethylcyclotetrasiloxane with decamethylcyclopentasiloxane (D₅) was used to examine the relative reactivities between the three cyclic monomers, under super-dry conditions. The copolymerization results have shown very similar reactivities of the three monomers. These results were in agreement with previously reported monomer reactivities and homopolymerization activation energies, as well as with the production of similar quantities of cyclic products. A single reaction mechanism for the polymerization of D₃, D₄ and D₅ is proposed for both the propagation and the backbiting reactions. This mechanism assumes that backbiting (giving D₆, D₅ and D₄ but not D₃) involves, as intermediates, silicenium ions solvated by nearby oxygens of their own chain, and propagation by a much more reactive unsolvated (unpaired) silicenium ion in lower concentration.

(Keywords: polymerization; dimethyl siloxanes; propagation)

INTRODUCTION

The radiation-initiated polymerization of dimethylcyclosiloxanes was first proposed to be cationic in nature by Chawla and St. Pierre. Further evidence of a cationic mechanism was presented previously, including the termination of the reaction of both decamethylcyclopentasiloxane (D₅) and octamethylcyclotetrasiloxane (D₄) by both trimethylamine and ammonia, and the square root dependence of the initial reaction rate of D₄ polymerization on the dose rate. To achieve a cationic polymerization it was necessary to exhaustively purify the monomers by 'super-drying' with long and repeated contact with numerous sodium mirrors. The reaction products from the radiation-induced polymerization of D₃, D₄ and D₅ (hexamethylcyclotetrasiloxane) were shown to differ from the chemically induced reactions of the same monomers. The by-products from the radiation-induced reactions were found to be primarily D₆ and D₄, with smaller amounts of D₅. This is in contrast to the chemically induced polymerization of the same monomers, where D₃ was found to produce only D₆, D₉ and D₁₂ rings as by-products.

In the present paper the copolymerization of D₃ with D₄ and D₄ with D₅ will be used to examine the relative polymerization rates of D₃, D₄ and D₅. These rates will be compared to previously reported results for the three monomers: their initial polymerization rates, activation energies, and cyclic reaction by-products. A propagation mechanism will be presented to account for the reported observations for all three monomers.

EXPERIMENTAL

The D₃, D₄ and D₅ monomers were purified, dried and treated exactly as detailed in previous papers. For the copolymerization reactions, the two monomers were condensed into one 5 mm n.m.r. tube, using the same techniques as described previously. For the copolymerization of D₃ and D₄, the monomer solution was a liquid at room temperature and did not require the use of glass rods, which were necessary to prevent sublimation of pure D₃ to the top of the n.m.r. tubes. The sample composition and reaction products were determined by ¹³C n.m.r. spectroscopy both before and during the polymerization reaction. The samples were irradiated (0.1 Mrad h⁻¹), and the ¹³C n.m.r. spectra were recorded as previously reported. Representative ¹³C n.m.r. spectra were reported in reference 4.
RESULTS AND DISCUSSION

To achieve the radiation-induced cationic polymerization of these cyclic siloxane monomers (D₃, D₄ and D₅), without termination by impurities, it is necessary to exhaustively purify the monomers using repeated contact with sodium mirrors\(^4\). For the radiation-induced polymerization of each monomer, the resulting conversion curves showed that they have similar reactivities\(^3\).

Another method used to examine the relative reactivities of pairs of monomers is to copolymerize the monomers. For the copolymerization reaction, any impurities present in one monomer would act in a similar fashion on both monomers, leaving the relative rates unchanged. Figure 1 shows the products and reactants for the copolymerization of D₄ and D₅ at 90°C. The initial composition of monomers is 45 mol% D₄ and 55 mol% D₅. After 1.4 Mrad the composition has changed to 58 mol% polymer (■), 15 mol% D₃ (▲) and 27 mol% D₄ (○). Figure 1 also shows the amount of D₄ (○) and D₅ (▲) that have reacted to form polymer. From the amount of D₄ and D₅ reacted, it is evident that neither D₄ nor D₅ is significantly more reactive than the other monomer.

Figure 2 shows the copolymerization data for D₃ and D₄ at 90°C. The initial monomer concentrations were 50 mol% D₃ (▲) and 50 mol% D₄ (○). The total mole per cent of polymer produced (■), the mole per cent polymer produced from D₃ (▲) and the mole per cent polymer produced from D₄ (○) are also shown in Figure 2. For the part of the reaction examined, it is evident that neither monomer is significantly more reactive than the other. The chemically induced polymerization of D₃ was found to proceed much faster than the chemically induced polymerization of either D₄ or D₅, which was attributed to ring strain in the D₃ monomer\(^6\).

The copolymerization data shown in Figure 2 demonstrate that for the radiation-induced polymerization of D₃, ring strain does not appear to be a factor in determining the rate of polymerization. The radiation-induced polymerization of D₃, D₄ and D₅ was shown to be a cationic reaction. This was demonstrated by the square root dependence of the initial polymerization rate of D₄ on the dose rate, and by the termination of the reaction by small amounts of the cationic inhibitors, trimethylamine and ammonia. However, the more bulky triethylamine failed to completely terminate the reaction of D₄; this was interpreted as a steric effect\(^4\). This observation could prove important in determining a suitable reaction mechanism.

The reactivities of the three monomers examined were found to be remarkably close to each other. The evidence for this includes the initial reaction rates for D₃, D₄ and D₅, the activation energies of D₃, D₄ and D₅, and the copolymerization of D₄ with D₅ and D₃ with D₅. The observations reported indicate that the size of the monomer ring does not affect the polymerization reaction. The postulated ring strain in D₃ gave a very specific set of products for the chemically induced polymerization, but it does not appear to be a major influence in the radiation-induced reaction. Ring strain in D₃ does appear to affect the by-products from the polymerization reactions. Measurable quantities of D₄, D₅ and D₆ were all produced by backbiting, but no D₃ was detected from the reaction of D₄ or D₅. Both D₄ and D₅ rings were
Radiation-induced polymerization. 3: D. M. Naylor et al.

Figure 2 Copolymerization products from D₃ and D₄ at 90°C

the primary by-products, with a lesser amount of D₆ being formed.

It was reported that the amounts of D₃ and D₄ formed in the radiation polymerization of D₃ were equal. This was different from the reported polymerizations of D₄, D₅, and D₆ initiated by triflic acid, for which the concentration of D₄ at the end of the reaction was double that of D₃.

Two possible theories may be offered to explain the different reactivity of D₃ obtained for the radiation-induced polymerization and the chemically induced cationic polymerization (triflic acid⁷ or acetyl chloride/SbCl₅ complexes⁸). The first explanation might be the nearly exclusive formation, using chemical initiators, of all cyclic products (D₃, D₆, D₁₀, D₁₂, ...) by end-to-end ring closure of the corresponding linear oligomers. However, using this explanation it is difficult to reconcile the simultaneous formation of high polymer (Mₙ ≈ 5 × 10⁵), macrocycles (Mₙ ≈ 2 × 10⁴) and a very large amount of D₆ (sometimes greater than 50%) that have been reported. Another possible explanation would be that D₆ (and perhaps D₉) might be formed by tertiary oxonium ions either by direct ring expansion⁷ or by a special type of backbiting involving the oxoniums⁸. Oxonium ions created by chemical initiators are more stable than the radiation-induced oxonium ions, owing to the proximity of a counter-ion of low nucleophilicity. This stabilization for chemically induced ions might exist for other cyclosiloxanes, but is larger with D₃ which is more basic than D₄.

A possible initiation sequence for the radiation-initiated polymerization reaction, presented previously, involved the loss of a CH₃ ion to form a silicenium ion, as shown in Scheme 1. This initiation mechanism agrees with the mass spectra work of Orlov¹⁰, which reported the loss of a CH₃⁺ ion. The initial monomer that loses a methyl ion does not undergo ring opening, indicating that ring size would not influence the initiation step. To support the reported experimental observations, the subsequent propagation steps would also have to be independent of ring size. There are two possible theories that could explain these observations.

The first explanation is that any ring strain in the monomers, particularly D₄, does not significantly affect the reactivity of the monomer. For the radiation-induced polymerizations, this would result in the same products being formed from D₃, D₄, D₅, and D₆ at similar rates. This is consistent with the reported observations, but would not explain the higher activation energies, and ineffectiveness of triethylamine as a cationic inhibitor. For the chemically initiated polymerizations, this explanation would suggest a different mechanism for the polymerization of D₃ relative to D₄, D₅, and D₆.

A second theory is for a single active centre to be the rate-determining step for the propagation reaction. When a new monomer unit adds onto the growing chain, the whole ring adds to the active end (Scheme 2). The newly formed silicenium ion will still be in close proximity to the backbone oxygens. This could lead to stabilization of the silicenium ion through a preferential bicoordination (or solvation) with the oxygens of the same chain in the fourth or fifth position, as shown in Scheme 3 (for the example of D₃). If the oxonium ion in the solvation ring is more stable, relative to a non-solvated oxonium ion, then reaction of the solvation ring to form polymer and cyclic by-products will be the rate-limiting step. Such
Radiation-induced polymerization. 3: D. M. Naylor et al.

![Scheme 1](image)

Scheme 1

![Scheme 2](image)

Scheme 2

![Scheme 3](image)

Scheme 3

A solvation ring may also explain the equal distribution of cyclic by-products formed by backbiting (D₄, D₅ and D₆). Some solvation rings of larger size might also be present, but at lower concentrations, leading to the formation of larger cyclic by-products (e.g. D₆). The formation of D₃ would be much less probable because of increased repulsion between the methyl groups, and greater steric strain when forming the six-member ring. No evidence of D₃ formation was found in these experiments, but the sensitivity of the n.m.r. analysis would probably not detect amounts less than 1%.

The solvation ring may also explain why the activation energies in the radiation-induced polymerization of D₃, D₄ and D₅ are greater than might be expected (4.5 ± 1.5 kcal mol^{−1}). These values are higher than those reported for the radiation-initiated polymerizations of styrene, α-methyl styrene, isobutylene (≈ 0 kcal mol^{−1}) and cyclopentadiene (<2 kcal mol^{−1})¹¹, but lower than those reported for vinyl ethers (5–10 kcal mol^{−1}). The relatively high activation energies for vinyl ethers have been explained by a complexation of ether groups on the polymer chain, the global apparent activation energy (E_{app}) being given by:¹²

\[
E_{\text{app}} \approx E(+) - \Delta H_p
\]

where ΔH_p (negative) is the solvation enthalpy. A similar case of intrachain solvation, the proposed solvation ring, may also explain the higher activation energies observed for radiation-induced polymerizations of D₃, D₄ and D₅.

CONCLUSIONS

The radiation-induced polymerization of dimethylcyclosiloxane monomers has been shown to be cationic in nature. This was demonstrated by plotting the initial polymerization rate (R_p) versus the square root of the dose rate for D₄, which gave a linear plot. This would be expected for a cationic unpaired-ion polymerization in which terminating impurities are absent. The cationic inhibitors, trimethylamine and ammonia, were shown...
to terminate the reaction, also indicating a cationic mechanism. The reported polymerization rates and
activation energies for D_3, D_4 and D_5 did not show significant reactivity differences between the three
monomers. Copolymerization data for D_5 with D_4 and for D_4 with D_3 supported these data. These observations
were different from the chemically induced reactions, where large differences in the reactivities of the three
monomers have been reported. The composition of cyclic products from the radiation-induced reactions was found
to be equivalent for the polymerization of all three monomers (3 mol% D_6, 8 mol% D_5, 8 mol% D_4 and
0 mol% D_3). In the polymerization of D_3 particularly, the amount of D_6 formed is the same as for the other
monomers, contrary to chemically initiated reactions for which the amount of D_6 depends on the initial monomer.
The lack of formation of D_3 can be attributed to strain in the six-member ring; however, the same ring strain in
D_3 was not observed to produce a faster polymerization reaction compared to D_4 and D_5

One possible explanation could be that any ring strain in the monomers does not significantly affect their
reactivities. This explanation would suggest a different mechanism for the chemically initiated polymerization
of D_3 relative to D_4, D_5 and D_6. This would explain the results from radiation-induced reactions, but fails to
explain the inability of triethylamine to terminate the polymerization of D_4, and the larger activation energies
reported.

A second explanation is of a single reaction mechanism for all three monomers that incorporates one solvation-
ring active centre, accounting for both the polymerization reaction and the ring formation reaction. This type of
mechanism could occur if the silicenium ion on the growing chain remains in the proximity of the oxygens
on the polymer backbone. This solvation-ring complex would serve to delocalize the cationic charge, stabilize
the intermediate, and put the silicenium ion in position to react with several oxygens on the backbone, to form
D_4, D_5 and a lesser amount of D_6. Reaction of the solvation-ring complex with a new monomer would
propagate the polymer chain. Ring strain in the six-member ring would make backbiting to form D_3 unlikely.
With the same solvation-ring complex for all three monomers, any differences in reactivities between the
monomers would be lost. This mechanism could account for the similar reactivities, by-products and activation
energies observed for the three monomers. The cationic inhibitor, triethylamine, failed to completely terminate
the polymerization reaction. The mechanism proposed involves a bulky active centre, and might explain why
the larger triethylamine molecule could not terminate the reaction, while the smaller trimethylamine and ammonia
did terminate the reaction.

ACKNOWLEDGEMENT

Part of this work was supported by a NATO travel grant between the University of Paris VI, Rhone Poulenc, Inc.
and NC State University.

REFERENCES