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Abstract 

This theoretical work evaluates the errors in average molecular weights due to instrumental broadening when a size exclusion chromato- 
graph is fitted with ideal on-line&, or i!?, sensors, and a correction method is proposed to compensate for such errors. The basic assumptions 
are that linear homopolymers are analyzed, and that the instrumental broadening is uniform. It was verified that an ideal molar mass detector 
systematically underestimates the polydispersity and that such bias may be simply obtained from the spreading function polydispersity. The 
correction method uses an estimate of the instantaneous polydispersity. Such function can be directly obtained from the spreading function 
alone, since it is proven to be little dependent on the shape of the analyzed MWD. 0 1998 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

Size exclusion chromatography (SEC) is the main 
analytical technique for measuring the molecular weight 
distribution (MWD) of a polymer [l-5]. When chromato- 
graphically-simple polymers are analyzed in an ideal size 
exclusion chromatograph with perfect resolution, then 
uniform or monodisperse fractions are instantaneously pre- 
sent in the detector cells, and fractionation occurs on a strict 
molecular weight basis. Under such ideal conditions, a 
simple concentration or mass detector (e.g. a differential 
refractometer, DR) would provide an undistorted or 
‘correct’ mass chromatogram. To obtain the MWD, an inde- 
pendent molecular weight calibration is required and/or an 
on-line molar mass detector must be used. If uniform or 
monodisperse standards of the analyzed polymer were 
available, then impulsive or ‘delta’ chromatograms would 
be obtained under perfect resolution and a unique molecular 
weight calibration would be determined. 

Unfortunately, perfect fractionation according to hydro- 
dynamic volume is impossible due to instrumental broad- 
ening (IB) and secondary fractionation mechanisms. The 
main cause of IB is axial diffusion in the fractionation 
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columns; while other minor sources include column end- 
fitting effects, finite injection volume, finite detection cell 
volume, and flow profiles in the capillaries. Secondary 
mechanisms are the consequence of interactions between 
the sample, the solvent, and the column packing [6]; 
however, they will not be further considered here. 

For chromatographically complex polymers (i.e. copoly- 
mers, polymer blends, branched homopolymers, etc.), a 
variety of molecular weights and compositions coexists in 
the detector cell, even under perfect resolution. This pro- 
blem will not be considered here, but an excellent investi- 
gation on the errors introduced in global fi,‘s when a 
combination of DR and LS detectors are employed has 
recently appeared [7]. That publication, however, does not 
include the effects of IB. For this reason, it is totally 
complementary of the present article. 

This work theoretically investigates the effect of IB in 
SEC under the following idealized conditions: (a) linear 
homopolymers are analyzed; (b) perfectly accurate mass- 
and molar-mass detectors are employed; (c) a uniform 
spreading function is adopted; (d) the breadth of the mass 
chromatogram more than doubles the breadth of the spread- 
ing function; and (e) from (hypothetical) monodisperse 
standards, a linear calibration is obtained, even in the 
presence of IB. 

0032-3861/98/$ - see front matter 0 1998 Elsevier Science Ltd. All rights reserved 
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Two recent works have considered the computer simula- 
tion of chromatograms when molar mass detectors are 
employed and when a Wesslau or a Schulz-Floty 
WD are analyzed [8,9]. Assuming perfect resolution 
and a linear calibration, it is concluded that in the case of 
a Wesslau distribution, all three chromatograms corre- 
sponding to the mass, the viscosity and the LS detectors 
are Gaussian symmetrical of equal variance, but of different 
peak positions (the LS signal is followed by the viscosity 
signal, and it in turn by the mass signal). The shift between 
the chromatograms is a function of the sample poly- 
dispersity and of the calibration curve slope. In the case of 
the Schulz-Flory distribution, the three chromatograms 
have similar and skewed shapes; and again expressions 
have also been developed that relate the shifts between 
the peak maxima with the sample polidispersity and the 
calibration curve slope. When a Gaussian band broadening 
is admitted and a Wesslau distribution are analyzed, then 
the calibrations log &f”(V) and log fiw(V) that can be 
obtained from molar mass detectors are also linear and 
parallel to each other, but rotated counterclockwise with 
respect to the perfect resolution case around the average 
of the concentration distribution. At the chromatogram 
tails, the calibrations become undetermined due to the 
large numerical errors involved in the calculations [9]. 

Light scattering (LS) detectors are normally fitted before 
DRs. To compensate for the time lag between the two sen- 
sors with simultaneous possible distortions in the capillary 
and the DR cell, a correction for this secondary (or terminal) 
shift and broadening has been proposed [8,10,11]. In this 
work, only the IB produced in the fractionation columns is 
of interest, and secondary broadening effects will not be 
further discussed. 

Several arguments against the necessity of correcting 
for IB have been suggested, e.g. (i) IB is negligible in 
modern high-resolution columns; (ii) with molar mass 
detectors, ‘true’ molecular weight averages are obtained 
independently of IB, since at each retention volume an 
estimate of the instantaneous average molecular weight is 
detected; and (iii) accuracy in SEC is relatively poor 
(considering the discrepancies obtained in most round- 
robin tests), and therefore other more important sources 
of error should be preferably attacked. Such arguments 
are not generally valid, however. For example, argument 
(i) is inapplicable when a narrow-distributed polymer is 
analyzed, when ‘sharp’ details of the MWD are required, 
and/or when column resolution is poor (i.e. for steep 
calibration curves). As it will become clearer in this 
work, argument (ii) is strictly valid only for the specific 
average molecular weight whose instantaneous value is 
being detected, but it cannot be generalized to the other 
averages. Lastly, even though other more important 
sources of error may be present, IB is unavoidable. For 
this reason, it should be taken into consideration in a 
truly quantitative analysis. 

For linear homopolymers and simple concentration 

detectors, the IB process is normally modeled through 
Tung’s equation [ 121: 

Cc 

G(V) = 
J 

g(V, Vo)G”(Vo) dVo (1) 
0 

where G(V) is the measured (mass) chromatogram; G”(V) is 
the corrected or ‘true’ chromatogram; g(V, Vo) is the (in 
general a nonuniform) spreading function; and V. is a 
dummy integration variable that represents the average 
retention volume of each individual g(V) function. 

As a consequence of IB, a variety of molecular weights 
simultaneously coexist in the detector cell, even when linear 
homopolymers are analyzed. For this reason, several instan- 
taneous molecular weight averages can be measured accord- 
ing to the employed detection system. For example, if an 
ideal LS detector is used in combination with an ideal DR, 
then an instantaneous weight-average molecular weight 
&f,(V) would be obtained, that represents: 

(2) 
i i 

where i is the number of molecular weight classes present in 
the detector cell; and Gi is the mass of molecules with 
molecular weight Mi. Similarly, if an ideal number-average 
molecular weight detector were available, then the follow- 
ing instantaneous number-average molecular weight ii?,,(V) 
would be obtained: 

(3) 

In both cases, G(V) = ~iGi(V) represents the instantaneous 
mass, and G = g G(V) d(V) is the total sample mass. 

From li;r,(V) and &In(V), the ‘calibrations’ log rii,(V) 
and log ii?,(V) can be directly obtained. Such calibrations 
depend not only on the spreading function, but also on the 
sample MWD. For this reason, they cannot in principle be 
applied to homopolymers of the same chemical nature but of 
a different MWD. 

Even in the presence of IB, a unique calibration log M(V) 
would still be obtained from strictly uniform calibration 
standards. For example, if symmetrical chromatograms were 
produced from such standards, then it is reasonable to assume 
that the retention volumes of their peak maxima should coin- 
cide with the retention volumes of the hypothetical impulsive 
chromatograms obtained under perfect resolution. 

In the simpler case of mass detectors and linear homo- 
polymers, the correction methods that compensate for IB 
have been classified as ‘phenomenological’ and ‘analytical’ 
[ 131. Phenomenological methods typically involve two 
steps. In the first step, Eq. (1) is inverted or deconvoluted 
to find GC( V) from the knowledge of G(V) and g( V, V,). In 
the second step, a molecular weight calibration is used, and 
the ‘correct’ MWD and averages are obtained. The ill- 
conditioned nature of the deconvolution operation causes 
that inversion methods are difficult to adjust, often produce 
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oscillatory or unstable solutions, and furthermore, such 
solutions also depend on the algorithm adjustment [14]. 
Analytical correction methods have been developed for 
linear calibrations and uniform or non-uniform spreading 
functions [ 151. These methods simultaneously transform 
retention volumes into molecular weights and correct for 
IB in a single step. For example, references [8,15- 171 
have developed the idea of rotating the linear calibration 
counterclockwise at some intermediate retention volume, 
as a way of narrowing the molecular weight range of 
G(V). Such techniques have the advantage of producing 
stable and non-oscillatory solutions, but are not generally 
applicable, however. As mentioned before, a linear ‘rotated’ 
calibration is only valid for a Wesslau distribution; and even 
in this particular case, it will be shown below that a non- 
linearity appears at the chromatogram tails. 

It is a well-known experimental fact that a combination of 
DR and LS detectors underestimates the global polydisper- 
sity iii&@, [ 10,18-201. Even though this effect has been 
attributed to IB, no clear ways of compensating for this bias 
have as yet been published. 

In what follows, a SEC experiment involving the use of 
ideal detectors is numerically simulated, with the aim of 
quantifying the biases in average molecular weights intro- 
duced by IB. Then, a correction method to compensate for 
such biases is developed. In all computer simulations, the 
calculations were performed with the maximum possible 
accuracy, in order to highlight the subtle biases that in tbe- 
ory appear in SEC data treatment. However, the average 
molecular weights and polydispersities are presented with 
only three significant figures. Unlike previous studies [8,9], 
the present approach is not restricted to any particular chro- 
matogram shape. For this reason, an analytical continuous 
treatment cannot be applied here. 

2. Base Numerical Example 

Consider the simulation of a typical SEC experiment 
involving the analysis of a linear polystyrene sample. The 
main idealization is that (in conjunction with a mass or 
concentration detector), two molar mass sensors provide 
perfect estimates of &f,,(V) and &f,(V). For iii,(V), it has 
been proven that such measurement is possible [21-231. In 
the case of &f,(V), LS detectors are insensitive at low mole- 
cular weights, and large measurement errors are produced at 
the chromatogram tails. However, none of such errors will 
be contemplated here. The reason for this is that we wish to 
determine and compensate for the rather minor biases that 
appear as a consequence of IB. 

The following functions (that correspond to an ideal 
chromatograph with perfect resolution) are assumed to be 
a priori known: (i) the true or ‘correct’ chromatogram GC(V) 
of Fig. l(a); and (ii) the linear calibration log M(V) of 
Fig. l(b). The bimodal chromatogram G’(V) results from 
the addition of two Gaussian distributions of the same 

a) 

b) 
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Fig. 1. Base Numerical Example. (a) ‘Correct’ chromatogram, G’(V); three 
samples of the uniform spreading function, g(V, V,& and resulting ‘mea- 
sured’ mass cbromatogram, G(V). (b) ‘Base’ linear calibration obtained 
from uniform standards, log M(V); ad hoc calibration log fin(V), obtained 
from G(V) and &f”(V); and calibration log iii,(V), obtained from G(V) and 
ai,( (c) ‘Correct’ MWD, G’(log M); broadened MWD obtained from 
the mass chromatogram and the linear calibration, G(log M); MWD 
obtained from G(v) and if,,(V), GM&U); and h4WD obtained from a 

G(V) and k,(V), GM~(M) 

area: one of mean 32.2 ml and variance 4 ml’, and the 
other of mean 37.4 ml and variance 5.76 m12. Strictly speak- 
ing, GC(V) is discrete, with 92 non-zero points taken at 
regular elution volume intervals (A = 0.2 ml). Each point 
of GC(V) represents a truly monodisperse fraction, and there- 
fore only 92 molecular weight classes constitute our theore- 
tical sample. The molecular weight range of G”(V) results is 
461-292000 g/mol. The calibration responds to the func- 
tion: log M = - 0.15389V + 9.496885. 

From GC(V) and log M(V), the correct MWD G(log M) 
of Fig. l(c) was obtained and the resulting average values 
are presented in the second row of Table 1. Throughout this 
work, MWDs with horizontal axes representing log M are 
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Table 1 
Base Numerical Example. Molecular weight averages and polydispersities corresponding to: (a) the ‘true’ MWD; (b) a broadened MWD obtained from the 
mass chromatogram and the linear calibration; (c) a biased MWD obtained from a combination of mass- and &f”(V) measurements; (d) a biased MWD obtained 
from a combination of mass- and&f,(V) measurements; (e) &f, as in (c), but with iii, calculated from an estimate of &f&V); and (f) &f, as in (d), but with A, 
calculated from an estimate of m,(V) 

Polydispersity error’ 

(%) 

(4 G’(M) 6820 26 100 3.83 - 

(b) G(M) 6560 27 200 4.15 8.19 
(c) G,“(M) 6820 24 400 3.57 - 6.82 
(d) Gfi, (M) 7330 26 100 3.57 - 6.97 
(e) Gtin 04); Gfi_,_ (M) 6820 26300 3.86 0.63 
(f) G%__x (M); GJ,, (M) 6790 26100 3.85 0.43 

‘True’ values are indicated in bold type 
‘[(estimate - 3.83)/3.83] X 100 

shown. For this reason, all abscissas in Figs. l-6 (that repre- 
sent either retention volumes or molecular weights) are 
interchangeable. Logarithmic axes were chosen to represent 
MWDs to minimize the deformation of such curves with 

a) 0.0°12[- 
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Fig. 2. Base Numerical Example. (a) Several instantaneous MWDs 
Gi(log Mi), obtained at different retention volumes. The arrows indicate 
that negligibly-sized distributions are present at the chromatogram tails. (b) 
Normalized instantaneous MWDs, G,,.(log Mi), showing that they tend to 
uniform distributions at the chromatogram ends. (c) Instantaneous polydis- 
persity iii,(V)/&(V), and approximate instantaneous polydispersity 
assuming a rectangular mass chromatogram, [&f,(V)/fi,(V)],,,, 

respect to the mass chromatograms. For any given molecu- 
lar weight range, the areas under the ‘continuous’ MWDs 
are representative of the sample mass fraction within that 
range. When a linear calibration is employed, evenly-spaced 
points along retention volume also result in evenly-spaced 
points along molecular weights, and therefore no height 
corrections are required. For unevenly-spaced points along 
log M(V), moderate height corrections are necessary; but the 
resulting deformations are considerably less significant than 
if linear molecular weight axes had been adopted. 

In Fig. l(a), only three individual g(v) functions of g(V, 
V,) (with their maxima chosen at the first, the last, and an 
intermediate point of GC(V)), are represented. Each g(V) 
function has a mean at the different chromatogram points, 
a variance of 0.64 ml*, and 25 non-zero points. 

By direct application of Eq. (l), the broadened or ‘mea- 
sured’ mass chromatogram G(V) of Fig. l(a) is obtained. 
Such a chromatogram has 92 + 25 - 1 = 116 non-zero 
points. If the linear calibration log M(V) is directly applied 
to evaluate a (broadened) MWD from G(V), then G(log M> 
of Fig. l(c) is obtained; its corresponding averages are 
presented in the third row of Table 1. As expected, a,, is 
underestimated, while &l, and &t,l&l,, are both 
overestimated. 

Instead of directly applying Eq. (l), G(V) may also be 
calculated from the areas under the curves of the instanta- 
neous MWDs. To find any such distributions, note first that 
a maximum of 25 different g(V) functions (and therefore a 
maximum of 25 different molecular weight classes) effec- 
tively contribute towards any instantaneous MWD. If at 
each retention volume, the individual contributions in 
mass Gi and in molecular weight Mi are stored, then the 
instantaneous MWDs of Fig. 2(a) can be obtained. In 
Fig. 2(b), the same distributions are represented, but with 
a normalized vertical axis. Note from Fig. 2(a,b) that (even 
though with negligibly low masses), the first and last points 
of G(V) are strictly monodisperse. At the mid-section of 
G(V), a fixed number of 25 molecular classes is present in 
the detection cell and the instantaneous distributions are 
approximately symmetrical. At the chromatogram tails, 
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Fig. 3. The ‘Rectangular’ Example. (a) ‘Correct’ chromatogram, C’(V); 
three samples of the uniform spreading function, g(V, VO); and resulting 
‘measured’ mass chromatogmm, G(V). (b) ‘Base’ linear calibration 
obtained from uniform standards, logM(V); ad hoc calibration 
logM”(V), obtained from G(V) and &f,(V); and calibration log&f,(V), 
obtained from G(V) and M,(“). (c) ‘Correct’ MWD, G’(log M); broadened 
MWD obtained from the mass chromatogram and the linear calibration, 
G(logkf); MWD obtained from G(V) and R,(V), Go,; and MWD 
obtained from a G(V) and &f,,,(V), G,Q(M) 

however, skewed and narrower instantaneous MWDs are 
observed. 

From the instantaneous h4WDs, M,(V) and ti,( V) can be 
calculated. On a logarithmic vertical scale, these functions 
produce the ad hoc calibrations log fin< V) and log fi,( V) of 
Fig. l(b). As expected, log &f_,(V) is always above 
log fin(V) except at the chromatogram ends, where both 
curves coincide. At the chromatogram tails, the skewed 
and narrower instantaneous MWDs determine that the 
two curves bend toward horizontal lines. From h?,,(V) and 
&f,(V), the instantaneous polydispersity &fW( V)/log li;r,( V) 
of Fig. 2(c) was obtained. As expected, &fw(V)/&fn(V) is 
unity at the chromatogram ends. 

a) 
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Fig. 4. The ‘Rectangular’ Example. (a) Several instantaneous MWDs 
Gi(log Mi), obtained at different retention volumes. The arrows indicate 
that negligibly-sized distributions are present at the chromatogram tails. (b) 
Normalized instantaneous MWDs, Gi,Jlog M,), showing that they tend to 
uniform distributions at the chromatogram ends. (c) Instantaneous polydis- 
persity &f,,,(V)/&&(V), and approximate instantaneous polydispersity 
assuming a rectangular mass cbromatogram, [M,(V)/M,(V)],,,,,. 

From the ‘measurements’ G(V) and tin(V), the MWD 
indicated by G&&log M) in Fig. l(c) was obtained. Simi- 
larly, from G(V) and ii&.,(V), GmJlog M) was produced. 
The moderate non-linearities of log M,(V) and log M,(V) 
determine that moderate height corrections were also 
required for representing such distributions. The average 
values of GMa(log M) and GmJlog M) are given in the 
fourth and fifth rows of Table 1. For GM&log M), the 
exact &f, is obtained while &lW is underestimated. For 
Gn;r,(log M), fiW is accurately determined while fin is over- 
estimated. In both cases, polydispersities below the ‘true’ 
value of 3.83 are obtained. 

3. Correction method 

To illustrate the basis of the proposed technique, two 
limiting examples will be considered. In Fig. 3, Fig. 4 and 
Table 2, the Rectangular Example corresponding to 
chromatogram G(V) in Fig. 3(a) is presented. In Fig. 5 
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Fig. 5. The Gaussian Example. (a) ‘Correct’ chromatogram, GC(V); three 
samples of the uniform spreading function, g(V, VO); and resulting ‘mea- 
sured’ mass chromatogram, G(V). (b) ‘Base’ linear calibration obtained 
from uniform standards, log M(V); cd hoc calibration log iii,(V), obtained 
from G(V) and M,,(V); and calibration log b&(V), obtained from G(V) and 
fi,,,(V). (c) ‘Correct’ MWD, G’(log M); broadened MWD obtained from 
the mass chromatogram and the linear calibration, G(logM); MWD 
obtained from G(V) and &f”(V), Ga”(M); and MWD obtained from a 

G(V) and&(V). GR~(M) 

and Fig. 6 and Table 3, the Gaussian Example of chromato- 
gram G(V) in Fig. 5(a) is given. 6$(V) responds to a 
Normal distribution of mean 35.4 ml and variance 7.84 m12. 

In both examples, the same spreading functions, molecu- 
lar weight ranges, and calibrations of the Base Example in 
Fig. 1 are readopted. Again, the area under any correct 
chromatogram or true MWD is G = 0.4; while the area 
under any individual g(v) function is unity. As in the 
Base Example, the following were calculated: the 
broadened chromatograms Gi(V) and G2(V) of Fig. 3(a) 
and Fig. 5(a); the calibrations log fin(V) and log &f,(V) 
of Fig. 3(b) and Fig. 5(b); the MWDs of Fig. 3(c) and 
Fig. 5(c); the instantaneous MWDs of Fig. 4(a,b) and 
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Fig. 6. The Gaussian example. (a) Several instantaneous MWDs 
G,(logMJ, obtained at different retention volumes. The arrows indicate 
that negligibly-sized distributions are present at the chromatogram tails. (b) 
Normalized instantaneous MWDs, G&og MJ, showing that they tend to 
uniform distributions at the chromatogram ends. (c) Instantaneous polydis- 
persity &f,,,(V)/fi,(V), and approximate instantaneous polydispersity 
assuming a rectangular mass chromatogram, [lii,(V)/lii,(V)],, 

Fig. 6 (a,b); and the instantaneous polydispersities of 
Fig. 4(c) and Fig. 6(c). 

Consider first the Rectangular Example. In Fig. 3(b), it 
can be seen that in the mid-chromatogram section, the 
calibrations log &f”(V) and log &fw( V) are both parallel to 
log M(V). From the MWDs of Fig. 3(c), note that all esti- 
mates predict the same (correct) value in the mid-horizontal 
section, and that all biases are concentrated at the distribu- 
tion tails. Also, even though the distributions G,,a&log M) 
and G,,MJlog M) obtained from the molar mass detectors 
predict the correct limiting molecular weights, artificial 
overshoots are observed at the distribution tails. From 
Fig. 4(a) and (b), it is seen that in the mid-chromatogram 
section all instantaneous MWDs exhibit the same common 
shape. Furthermore, it can be proven that such shape coin- 
cides with the shape of g(V). Each g(V) function represents 
the chromatogram obtained from a monodisperse sample in 
the presence of IB. Alternatively, each g(V) function can 
be thought of as the chromatogram of a hypothetical 
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Table 2 
The Rectangular Example. Molecular weight averages and polydispersities corresponding to: (a) the ‘true’ MWD, (b) a broadened MWD obtained from the 
mass chromatogram and the linear calibration; (c) a biased MWD obtained from a combination of mass- and lii,( V) measurements; (d) a biased MWD obtained 
from a combination of mass- and iii,(V) measurements; (e) iii, as in (c), but with 8, calculated from an estimate of iii,(V); and (f) fii, as in (d), but with&f, 
calculated from an estimate of fin(V) 

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

MWD iii, 

G’(M) 2910 

G(M) 2800 

G.u, (M) 2910 

GfiV (M) 3100 

G.G.~(M); GM_,~ (M) 2910 

G.G,m,. (M); G,,(M) 2910 

a, Ii&JIG, Polydispersity error’l(%) 

46300 15.9 - 

48 100 11.2 8.22 
43400 14.9 - 6.15 
46300 14.9 - 6.13 
46 300 15.9 0.10 
46300 15.9 - 0.03 

‘True’ values arc indicated in bold type 
‘[(estimate - 15.9)/15.9] X 100 

polydisperse sample obtained under perfect resolution. With 
perfect resolution, the linear calibration log M(V) is applic- 
able; and therefore the ‘calibrations’ &fw,,(V) and Z%,,,(V) 
corresponding to g(V) can be obtained. In our numerical 
example, the (fictitious) polydispersity of any g(V) function 
is lii,,,(V)l~“,,(V)=M,,,l~~,, = 1.08. This value coin- 
cides with the instantaneous polydispersity of Gt(V), 
ii%,(V)/&f,,(V) at any of the mid-values. At the chromato- 
gram tails, the instantaneous polydispersity of G,(V) 
decreases in a nonlinear fashion, tending to unity at the 
curve ends (Fig. 4(c)). To understand why &f_,,/2i;l,,, is a 
constant, note that as g(V) is shifted toward higher retention 
volumes, M,(V), &f,,(V), i%&,,(V) and i&,(V) all decrease 
at exactly the same rate. (Clearly, this would not have been 
the case for non-uniform spreading functions and/or for 
nonlinear ‘base’ calibrations.) 

Consider now the Gaussian Example. As expected from 
the theoretical work by Jackson and Yau [9], it is verified 
that (in the mid-chromatogram section) the calibrations 
log fin(V) and log k,(V) are again both linear and parallel 
to each other, but now rotated counterclockwise with 
respect to log M(V) (Fig. 5(b)). The polydispersity function 
lii,(V)/i%f,,(V) is also practically constant in the mid-chro- 
matogram section, but slightly below 2i;r,, ,@f”, g (Fig. 6(c)). 

To check the effect of the curve discretizations in the 
previous results, all calculations were repeated, but for a 
triple number of points; adopting AV intervals equal to l/3 
of its original value in all functions. It was verified that the 
curves obtained were exactly superimposed with those pre- 
sented in Figs. 1-6, and that the averages, presented in 
Tables l-3, also coincided with the shown values, to the 
last significant figures. 

In the three investigated examples, the MWDs differ 
quite considerably from each other. However, in Fig. 2(c), 
Fig. 4(c), Fig. 6(c), it can be seen that the three polydisper- 
sity functions are all relatively similar; with most of its 
ordinates below but close to the limiting value &lw,$@,,s. 
For this reason, it is simple to see that an upper bound for the 
percentage of error in the global polydispersity is simply 
given by [(l -I@~,,/I@“,,) X 1001. When an ideal molar 
mass detector is used, then only one of the estimated 

averages is biased. Thus, the absolute value of the error in 
the biased average molecular weight will coincide with 
that of the polydispersity. In our numerical examples, 

1”Iw,&K,g = 1.08, and therefore an error up to - 8% is 
to be expected in the polydispersity. This may be observed 
in the last columns of Tables 1-3, where the error in 
the estimated polydispersity ranges from - 6.13% for the 
Rectangular Example to - 6.97% for the basic example. 

If an approximate instantaneous polydispersity function 
could be estimated from the spreading function alone, then 
it would become simple to correct for the molecular weight 
biases. We here propose to approximate a,( V)h@,,( V) with 
a trapezoidal function that would correspond to a ‘rectan- 
gular’ MWD appearing in the same elution volume range as 
the measured chromatogram. The following procedure is 
proposed: 

the two mid-section limits of [iff,,,(V)/2ii,(V)],,,,, are 
determined by adding and sub&acting the width of g(V) 
to the high- and to the low-molecular-weight ends of the 
chromatogram; 
in the mid-section, adopt a constant 
[M,(V)/Mn(V)]appr,,x, equal to the ‘polydispersity’ of 

g(v)> 2ii,,,J@,,,; and 
for the tails of [M,(V)/M,(V)],,,,, adopt linear varia- 
tions from the central limit points to unit polydispersity 
at the chromatogram ends. 

From [~~(V)/~“(V)],,,,,~,, the corrected molecular 
weight averages are then obtained as follows: 

1. if an(V) is measured, calculate the global &fw from 
I@ ,,,,,,.(V) = fin(V) X [&vW>~lii,(V)1,,,,x.~ and 

2. if M,(V) is measured, calculate the global li;r, from 
ii!f .,,pprox.(V) =&v(V) X ~~w(v>~~,(v)l- lappx.. 

In Fig. 2(c), Fig. 4(c) and Fig. 6(c), the approximate 
polydispersity function corresponding to our three examples 
is presented. By application of the proposed correction 
method, the results in the last two rows of Tables l-3 are 
obtained. Since the polydispersity function was approxi- 
mated assuming a rectangular distribution, then the best 
corrections are observed for the Rectangular Example. For 
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Table 3 
The Gaussian Example. Molecular weight averages and polydispersities corresponding to: (a) the ‘true’ MWD; (b) a broadened MWD obtained from the mass 
chromatogram and the linear calibration; (c) a biased MWD obtained from a combination of mass- and &f,(V) measurements; (d) a biased MWD obtained from 
a combination of mass- and &f,(V) measurements; (e) iii, as in (c), but with M, calculated from an estimate of iii,(V); and (f) iii, as in (d), but with M, 
calculated from an estimate of A,(V) 

MWD Polydispersity error’ (%) 

(4 GW 6920 18288 2.62 
(b) G(M) 6650 18900 2.84 8.19 
(c) G,n (M) 6920 16900 2.44 - 6.96 
(d) Gfil (M) 7440 18288 2.44 - 6.96 
(e) Gfi”(M); GM_,, (M) 6920 18300 2.64 0.56 
(f) G,+I.,.,,. (M); Gfiw (M) 6880 18208 2.64 0.52 

‘True’ values are indicated in bold type 
‘[(estimate - 2.62)/2.62] X 100 

the Base and the Gaussian Examples, [&f,(V)/fi,(V)],rox~ 
in general overestimates the real polydispersity function. 
For this reason, the corrected &f,(V) is slightly overesti- 
mated, the corrected a,(V) is slightly underestimated, and 
the corrected polydispersities are both slightly above their 
true values. 

4. Conclusions 

Ideal on-line LS detectors produce &f,,(V) estimations in 
excess, while ideal iii,(V) detectors produce a,+. estimations 
in defect. In both cases, this generates an underestimation of 
the global polydispersity. An upper bound for the biases in 
the said variables may be simply calculated from the spread- 
ing function ‘polydispersity’ ii?,, ,$&,, g. To compensate for 
the said biases, a novel correction method was proposed that 
consists of appropriately shifting the measured instanta- 
neous molecular weight averages using an estimate of the 
instantaneous polydispersity. The method is numerically 
robust, because no ill-posed deconvolutions or adjustable 
parameters are required. 

Previous ‘analytical’ techniques that correct for IB by 
simply rotating the calibration curve [8,15-171 are strictly 
applicable to Gaussian mass chromatograms, but cannot be 
in general adopted. For example, it was verified that for the 
limiting case of a ‘flat’ or rectangular chromatograms, 
log ii&(V) and log &f,(V) both remain parallel to the base 
linear calibration. 

The low sensitivity of the instantaneous polydispersity 
to the MWD shape determines that a trapezoidal shape 
for such function can always be adopted. To this effect, 
the total breadth and the ‘polydispersity’ of g(V) are 
required. For typical unimodal chromatograms, the proposed 
approximation will slightly overestimate the true global 
polydispersity. 

The main limitation of the present approach is that a 
uniform spreading and a linear ‘base’ calibration are 
required. The latter assumption is reasonable, and is in 
general satisfied, except perhaps for samples containing 
ultra-high molecular weight material. The former assump- 
tion is at present justified by the fact that the determination 

of nonuniform spreading functions is complicated and still a 
matter of controversy [ 141. 
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